System-in-Package (SiP) Testing

Jin-Fu Li
Department of Electrical Engineering
National Central University
Jhongli, Taiwan
Outline

- Introduction
- System-on-Chip (SoC), Multichip Module (MCM), and System-in-Package (SiP)
- Testing of Bare Dies
- System-in-Package Testing
System-on-Package

SoP

SiP

Memory

Memory

uP

RF IC

Opto Elec

Analog/Digital IC

Passive components

RF, Filters

Decoupled Capacitors
Relation of SoP, SiP, 3-D IC, and SoC
The system-in-package (SiP) is a single miniaturized functional module realized by vertical stacking of two or more similar or dissimilar bare or packaged chips. Bringing the chips closer together enables the highest level of silicon integration and are efficiency at the lowest cost, compared to mounting them separately in traditional ways. SiP technology allows the integration of heterogeneous IC technologies. Therefore, SiP technology is emerging as a strong contender in a variety of applications that include cell phones, digital camera, PDAs, etc.
Basic requirements of chip package

- Signal distribution
- Heat dissipation
- Power distribution
- Circuit support and protection
Packaging Hierarchy

Level 1

- Chip
- Single-chip package
- Printed wiring board (PCB)

Level 2

- Multichip Module (MCM)
- Chips
Wire Bonding

- Pitch=75-130 um, Leads=1.5mm
- I/O density=400/cm²

Diagram showing bonding pad and chip face.
The flip chip assembly is much smaller than a traditional carrier-based system

- No leads are needed
- Pitch=75-250 um
- I/O density=1600/cm²
Flip-Chip Bonding

- **Advantages**
 - The flip chip assembly is much smaller than a traditional carrier-based system
 - The chip sits directly on the circuit board, and is much smaller than the carrier both in area and height

- **Disadvantages**
 - Not suitable for easy replacement, or manual installation
 - Require very flat surfaces to mount to
 - Sometimes difficult to maintain as the boards heat and cool
Outline

- Introduction
- Interconnection and Package
- System on Chip (SoC), Multichip Module (MCM), and System in Package (SiP)
- Bare Dies Testing
- System in Package Testing
SOC, MCM, and SIP

- Mainframe computers drove MCMs in 1980s
- High-end networking, signal processing, and digital communication demands drive SoC
- Cell phones and handsets are driving SiPs solutions
- Some view SiP as a vertical MCM
- SoC: a packaged chip with only one die
- SiP: an assembled system composed of a number of individual dies on a packaged chip
Several components are integrated into a chip
Multi-chip module package

- Several specialized chips are also assembled in a single ceramic package as a system solution using traditional assembly processes.
- The chips in an MCM are mounted on the same plane (the cavity substrate), whereas SiP employs die stacking as its natural configuration.

Source: IBM Power5
SiP design and test is a viable, rapid, and cost-effective solution to high-density system integration.

- SiP is more than an IC package containing multiple die.
- SiP helps exceed the limits of the SoC designs.

Source: nanoamp
Three-Dimensional Packaging

- 3D packaging is critical to integrating the multi-media features consumers demand in smaller, lighter products.
- It can deliver the highest level of silicon integration and area efficiency at the lowest cost.

Source: Amkor

Source: ETS07
SiP Market

- Portable devices, cell phone
 - 70~80%

- Module integration
 - RF cellular, RF amplifier, switch, transceiver
 - Digital
 - Memory module, DRAM, Flash
 - WLAN, Bluetooth

- In 2008, 3.25 billion SiPs are expected to be assembled
Advantages of SiP

- Combining different die technologies (Si, GaAs, SiGe, etc.)
- Combining different die geometries (180nm, 90nm, 45nm, etc.)
- Including other technologies (MEMS, optical, vision, etc.)
- Including other components (antennas, resonators, connectors, etc.)
- Increasing circuit density and reducing PCB area
- Reducing design effort
- Improving performance
Challenges

- The most critical issues are design and test methods and solutions
 - Common EDA tools are necessary for integrating mixed-signal and RF blocks
 - KGD should be readily available for SiP designers
 - The proliferation of integrated passive devices (IPD) at the SiP substrate level is needed
Test Issues

- How to test chips and packages
 - DFT, package test, and KGD strategies
- How to integrate and test different types of memories
 - Alternative design and package options
 - Debug and yield enhancement
Outline

- Introduction
- Interconnection and Package
- System on Chip (SoC), Multichip Module (MCM), and System in Package (SiP)
- Bare Dies Testing
- System in Package Testing
SiP Test Flow

- Memory chip
- VLSI chip
- Analog/power chip

- Wafer test
- Wafer test
- Wafer test

- KGD

- Stacking package
- Interconnection test
- Post-packaging test

- Assembly process

- Intra-system connectivity

- Identify the problem during the packaging

- Overall SiP test

- Commercial product

SiP DFM rules
Die process

Quality

- Die process

Die Fabrication

Die #i

Die Fabrication

F_{ci}: good die
F_{di}: defective die

Die

Test

F_{i,go}

F_{i,nogo}

Pass die tests

Fail die tests

Fi go

Fi nogo

Fi go

Fi nogo

Pass die tests

Fail die tests
Quality

- SiP Process

\[F_1^{go} \quad \ldots \quad F_n^{go} \]

SiP Assembly

\[A_{ci}^{good} \quad A_{di}^{defective} \]

SiP Test

\[A^{go} \quad A^{nogo} \]

Pass SiP tests

Fail SiP tests
Yield of SiP

- If various chips are used in a chip
 - $Y_m = [(p_1)^A (p_2)^B (p_3)^C \ldots]$
 - Y_m: yield probability for assembled chips
 - A, B, C: number of dice of each type
 - p_1: probability of die 1 being good

- Yield of SiP is also dependent on
 - P_s: Know-good probability of substrate
 - P_i: Know-good probability of die interconnects
 - Q: number of interconnects
 - P_w: probability of assembly workmanship
 - $Y_{sip} = Y_m \times P_s \times (P_i)^Q \times P_w$
SiP Defect Level

- Definition of defect level: percentage of SiPs shipped which passed the SiP test, but may be faulty
 - DL$=1-Y_{sip}(1-FC)\times100\%$
 - Y_{sip}: yield of SiP
 - FC: faulty coverage

- Defect level can be reduced by high quality bare dies and high FC
Example

- The assembly process accumulates all the problems of the individual dies

<table>
<thead>
<tr>
<th></th>
<th>DLi (ppm)</th>
<th>Pi (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substrate</td>
<td>600</td>
<td>99.94</td>
</tr>
<tr>
<td>Die 1</td>
<td>4100</td>
<td>99.59</td>
</tr>
<tr>
<td>Die 2</td>
<td>35500</td>
<td>97.45</td>
</tr>
<tr>
<td>Die 3</td>
<td>1200</td>
<td>99.88</td>
</tr>
<tr>
<td>Y_{SIP}</td>
<td></td>
<td>96.87</td>
</tr>
</tbody>
</table>
Bare Dies Testing

- To test an SiP, each bare die must be tested first before packaged in the SiP
 - To eliminate compound yield loss
- It is performed at standard wafer sort
 - Manufacturing defects of silicon implementation
- Known Good Dies
 - Confidence level that bare dies are fully tested for performance over a temperature range
 - A bare die with the same quality after wafer test
- Mechanical probing techniques
- Electrical probing techniques
KGD Approaches

- Process control-based approach
 - Improve yield through six sigma and zero defect yield programs

- Testing-based approaches
 - Sampling approach
 - Full test and burn-in approaches
 - Temporary pressure contacts
 - Wafer-level
 - Die-level
 - Permanent contacts
 - Semi-permanent contacts
 - Design-based approaches
Testing-Based Approaches

- Require high quality functional test
- Require performance test
 - Performance driven application (at-speed)
- Require reliability screening
 - Wafer level burn-in
 - Tape automated bonding (TAB)
 - Temporary test packaging
Sampling Approach

- Based on statistical probability of KGD
 - Systematic defects - process or design-related problems

- Process
 - Package a sufficient sample of dies in wafer lot
 - Perform exhaustive test and burn-in
 - Certify entire lot if meets requires criteria
 - Perform binning each die based on tests of nearest neighbors
Full Test and Burn-In Approaches

- **A: Temporary pressure contacts**
 - Wafer level
 - Reliability screens
 - Burn-in
 - Die level
 - Temporary packages, carrier
 - Probe cards and techniques
 - Membrane pressure
- **B: Permanent contacts**
- **C: Semi-permanent contacts**
Wafer-Level Burn-In

- Full wafer contactor
- Applied High voltage and temperature
- Long term solution for KDG

Traditional back-end

Wafer → Wafer probe → Package → Burn-in → Final Test → Know-Good-Package

Wafer-level Burn-in and Test

Wafer → Wafer-level burn-in and test → Wafer final test → KGD wafer
Wafer-Level DC Stress

- Used for many years by DRAM vendors to reduce burn-in time
- Often referred to as wafer-level BI
- Provides external control of array voltages
- Stresses most defects
Die-Level Burn-In Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Pitch Limit</th>
<th>Process complexity</th>
<th>Parallelism</th>
<th>Initial $</th>
<th>Operating $</th>
<th>Optimal Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier</td>
<td>>120um</td>
<td>Med High</td>
<td>Low–Same as PLBI</td>
<td>Low</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Sac Metal WLBI</td>
<td>>120um</td>
<td>High</td>
<td>High–full Wafer</td>
<td>Medium</td>
<td>Medium High</td>
<td>High</td>
</tr>
<tr>
<td>Direct Contact</td>
<td><100um</td>
<td>Low</td>
<td>High–full wafer</td>
<td>High–Contactor tooling and NRE</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>WLBI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: freescale
Probe Cards

- Wafer sort using probe card is a traditional technique
- New probe cards are required for new die
- High performance operations depends on probe pin
- ATE Limitations
 - High I/O counts
 - High performance devices
- For bare dies, probing technology is crucial
Membrane Contact

- The distance between the pads and the tuning components is reduced
- The membrane offers significant advantages for high-performance wafer test
Vertical probe was developed to fulfill the requirement for array configurations
- Co-planarity
- The demand on novel and expensive probe techniques is increased

Solutions
- MEMS-based implementations of probe cards
- Noncontact testing
Each antenna and transceiver probes one I/O on the DUT with each I/O site on the DUT
Testing RF and mix-signal ICs represents a big challenge due to the propagation of disturbed signal.

- Wideband protocols add many constraints to the wafer probing
 - Membrane
A: Temporary pressure contacts

B: Permanent contacts
- TAB (Tape Automated Bonding) lead frame bonded
- Testable ribbon bonding
- Bare die carrier

C: Semi-permanent contacts
Permanent Contacts

- Minimal package permanently assembled with die
- Die bounded into low cost carrier or tape
- TAB lead frame bonded to IC
 - Full test and burn-in is possible
 - TAB technology is expensive
- Testable ribbon bonding
 - Die ribbon bounded to low cost carrier
 - After test and burn-in ribbon cut, leaving TAB like die
- Bare Die carrier
 - No performance penalties
 - Easy carrier replacement
Design-Based Approaches

- DFT
- Yield optimization loop
 - Yield learning; detection, analysis, and correction
- Architecture of IIP
 - Ensures manufacturability and lifetime reliability of SiP
- Embedding process monitoring IP
 - Test vehicle or test die
- Embedded test & repair IP
 - Embedded memory with redundancy
- Embedded debug & diagnosis IP
 - Collect failure data and analyze obtained data by off chip
Bare Substrate Testing

- Test for electrical integrity before attachment
 - Mechanical probing
 - Contactless electron-beam probing
- Prevent population of defective substrates
 - No possible to repair substrate
 - Dies damaged during removal
 - High cost
- Failure mechanisms
 - Short and open
Substrate Testing

- Known good substrate is required prior to bonding
- In-Process Testing
 - Intermediate tests during fabrication to access every wiring layer
 - Mainly contactless probing techniques
 - Helps process improvement and process control
- Final Testing
 - Before populating expensive bare dies
Substrate Testing Techniques

- Mechanical probing – slow
 - Bed of nails – traditional PCB testing
 - Moving test head
 - Single/double point flying probes – capacitance and resistive, open, and short testing
 - Glow discharge – optically detect opens and shorts

- Contactless probing - fast
 - Automatic optical testing – image analysis
 - Electron beam testing – charge and read each pad

Bed-of-nails probing
Outline

- Introduction
- System on Chip (SoC), Multichip Module (MCM), and System in Package (SiP)
- Bare Dies Testing
- System in Package Testing
SiP Assembly Process

- Incoming bare die test
- Mounting process
 - Mechanical placement
- SiP assembly test
 - Parametric test
 - Functional test
- Encapsulation
 - Molding a plastic body around substrate
- Burn-in
- Retest
- Rework
SiP Testing

- Die-to-die interconnection
 - Delay marginalities
- Die-to-die bonding
 - Electromechanical marginalities
- Marginal pad or die placement on the substrate can affect the yield
 - Electrical effects, such as crosstalk or bonding violation
- Need microprobing and traceability
System Test of SiP

- Functional test
 - Structural and performance test
 - Check application specifications and functionality
 - Require a complex test setup with expensive instruments
 - Long test times
 - Testing full paths makes diagnostics difficult

- Access methods
Test Challenges for SiP

- Accessibility
- Controllability
- Observability
- Failure localization
- Failure analysis
- Deep memory and mixed signal
- Design for test (DFT)
Functional System Test

- Advantage of functional test
 - Good correlation at the system level

- Disadvantages
 - Complex test setup with expensive instruments
 - Long test times
 - Diagnostic difficulty

- Example:
 - Path-Based testing
 - Lookback techniques
Consider a system with a digital plus mixed-signal circuitry, an RF transceiver, and a power amplifier dies.

Receiver path

Transmitter path

Path-Based Testing
Receiver Test

- The quality of a receiver is given by its bit error rate (BER)
- The BER test requires a lot of data to achieve the target accuracy
- A bit-error, p_e

$$p_e = 0.5 \cdot erfc\left(\sqrt{\frac{E_b}{N_o}}\right)$$

$$E_b = C / f_b$$

- N_o : the noise power spectral density
- E_b : the energy of the received bit
- C : the power of the carrier
- f_b : the data rate
The transmitter channel is usually tested by measuring the error vector magnitude (EVM)

- $V(t)$ represents the transmitted signal, where $I(t)$ and $Q(t)$ are the data signals

\[V(t) = I(t) \cos(\omega_c t) + Q(t) \sin(\omega_c t) \]

\[EVM = \sqrt{(I - I_{ref})^2 + (Q - Q_{ref})^2} \]
Loopback Techniques-External

- External
 - Creating the loop between the output of PA and the input of LNA

Loopback circuit

BP Filter

Offset mixer

Phase/Freq. divider

TA

Test attenuator

External LO

Down-converter

LNA

LP

ADC

Base Band DSP

DAC

LP

Up-converter

LO

PA
Internal

- Creating the loop in the front-end IC
- Connecting the up-converter to LNA through TA, a complementary BIST sharing the circuitry with on-chip resources
Test Embedded Components

- Structural testing of interconnections between dies
- Structural or functional testing of dies themselves
- Challenge
 - Hard to access the dies from the I/Os of the SiP
- To improve the testability, SIP test access port (TAP) is placed on the bare dies
- To provide high quality structural test and failed element identification capability, BIST and boundary-scan are used
SiP Test Access Port

Features
- Access for die and interconnection tests
- SIP test enabling at system level
- Additional recursive test procedures during assembly

IEEE 1149.1 and 1149.4
- Boundary scans are used in bare dies
- 1149.1 for digital dies and 1149.4 for mixed-signal or analog dies

IEEE 1500
- Designed for SoC test at system level
1149.1 Test Solution

- IN1 → OUT1
- IN2 → OUT2
- IN3 → OUT3
- IN4 → OUT4

- Die Core
- Internal Scan
- Instruction
- Identification
- Bypass

- TAP Controller
- TCK
- TMS
- TRST

Boundary scan cell
Boundary scan path
1149.4 Test Solution

- **Digital I/O**: DMB
- **Boundary scan path**
- **Internal analog bus**
- **Analog boundary module**

Components:
- **Controller**
 - Add.
 - Instruction
 - Bypass
 - TAP Controller
 - MUX

- **Test bus interface circuit**
 - AT1
 - AT2

- **Mixed-Signal Core**
- **Analog I/O**
 - AB1
 - AB2
 - ABM
Ordered Assembly Strategy

- The assembly process may introduce additional failures
- Intermediate tests after every die soldering may be required
- Dies are assembled from the least to the most expensive dies to optimize the overall SiP cost
TAP Controller

- TAP must manage boundary scan resources during the incremental tests even while some dies are missing
- Two configurations are required
 - One is for the incremental test - star
 - One is for the end-user test - ring
Star TAP Controller

- The star configuration attempts to facilitate incremental testing during the assembly
 - The link between the dies is broken during the assembly
Ring TAP Controller

- The end-user cannot detect the presence of several dies in the ring configuration
 - Only one TMS control signal is required
Interconnection

- The interconnection test is performed through boundary scan in *external test mode*.
 - For k wire, \(\log_2(2k+2) \) vectors are required to test bridging faults.

<table>
<thead>
<tr>
<th>Step</th>
<th>Die 1</th>
<th>Die 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Reset</td>
<td>Reset</td>
</tr>
<tr>
<td>2</td>
<td>PRELOAD</td>
<td>PRELOAD</td>
</tr>
<tr>
<td>3</td>
<td>EXTEST</td>
<td>EXTEST</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vector #1</td>
</tr>
<tr>
<td>4</td>
<td>EXTEST</td>
<td>EXTEST</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vector #2</td>
</tr>
<tr>
<td>5</td>
<td>Reset</td>
<td>Reset</td>
</tr>
</tbody>
</table>
Digital and Memory Dies

- External pads of an SiP are less
 - Integrate additional DFT for testing specific dies on another die
 - Implement a configurable DFT with software or programmable capabilities on another die
 - Use the transparent mode of other dies to directly control and observe from the primary I/O

- Example
 - The embedded memories are usually packaged without BIST circuit
 - The BIST circuit has to be implemented in another digital core
 - Dies without boundary scan
Use a transparent mode of the other dies to control and observe from the I/O of the package.
Hierarchical 1500 Test Solution

Features
- Easy and fast test interoperability at the core and subsystem layers
- Effective support for chip-to-chip interconnection test
- Definition of a standard approach for generating the chip-level and SiP-level test program
SiP with 1500

- A single serial line is used as the TAM
- It is useful for both chip-level and SiP-level test
SiP-Oriented Wrapper

- The wrapper is to provide test data to each core and capture results and to perform data conversion for transmission on the selected TAM.
- A six-signal bus allows management of the wrapper serial structures by controlling data transfers to and form each core.
Registers in a Wrapper

- The wrapper boundary register (WBR) is used as a boundary scan chain at core level.
- The wrapper bypass register (WBY) has a single flip-flop to bypass test data to other cores.
- The wrapper instruction register (WIR) receives the instruction and controls the multiplexers.
1500 Wrapper

- Core-to-core interconnection testing
Chip-to-chip interconnection testing

- WPI[0:2]
- Scan chain 0
- Scan chain 1
- WPO[0:2]
- d[0]
- d[1]
- d[2]
- d[3]
- d[4]
- q[0]
- q[1]
- q[2]

Assume d[3] and d[4] are SSoC PI.
Assume q[1] and q[2] are SSoC PO.

Clock Scan

Test data input

Wrapper serial control

Test data output
SiP Memory Test

- Memory test time dominates product test flow and test platform choice
 - SoC tester and memory tester
- DFT for mixed-signal and memory is the better solution
Test of Memories without BIST

- Use dedicated chip with BIST
- Include BIST facilities in neighboring dice
Test of Die without Boundary Scan

- Use boundary scan chain of neighboring ASIC
 - Memory arrays, glue logic, etc.
- Use dedicated boundary scan parts to create virtual boundary scan
 - Probe chip, octals, etc.
SiP Level BIST

- Effective self-test in autonomous manner
- Test controller embedded in SiP, instead of external test processor
- Embedded ASIC block or dedicated chip
- SiP technology drivers
 - High quality test
 - BIST can provide high test coverage
 - Performance test
 - BIST runs at system speed
 - Reliability test
 - BIST runs during burn-in
Analog and RF Components

- **Challenges**
 - Cost reduction of the required test equipment
 - Difficult to access the dies after assembly process

- **Analog, mixed signals, and RF circuits require long functional test time**

- **Approaches**
 - Move tester functions onto the chip itself - BIST
 - Convert analog signals on-chip to timing delay information for ATE measurement
 - Use DFT techniques to internally transform the analog signals to digital signals

- **Only digital signals are externally observed by less-expensive digital tester**
Analog Network of Converters

- Assume that DACs and ADCs are available
- Input and output signals are fully digital
- Both DAC-to-ADC and analog blocks paths can be tested
MEMS

- Test equipment is a problem for MEMS testing
- Two approaches
 - Perform an indirect structural or functional test
 - Implement DFT circuitry to convert the physical signal to an electrical signal
- Significant package influence is another challenge for MEMS testing
 - Hard to detect defective MEMS before packaging
MEMS Testing in SiP

- The classical problems are more serious
 - Adjacent dies might disturb and modify the MEMS quality
 - The test needs to generate and observe various nonelectrical signals for several MEMS in the same SiP
- The alternative techniques with only electrical signals are the only viable option

Source: ETS07