Chapter 6
Combinational CMOS
Circuit and Logic Design

Jin-Fu Li
Advanced Reliable Systems (ARES) Laboratory
Department of Electrical Engineering
National Central University
Jhongli, Taiwan
Outline

- Advanced CMOS Logic Design
- I/O Structures
Pseudo-NMOS Logic

A pseudo-NMOS inverter

The low output voltage can be calculated as

$$\beta_n (V_{DD} - V_{tn}) V_L = \frac{\beta_p}{2} (V_{DD} - |V_{tp}|)^2$$

for $$V_{tn} = -V_{tp} = V_t$$

$$V_L = \frac{\beta_p}{2 \beta_n} (V_{DD} - V_T)$$

Thus $$V_L$$ depends strongly on the ratio $$\beta_p / \beta_n$$

The logic is also called ratioed logic
Pseudo-NMOS Logic

☐ An N-input pseudo-NMOS gate

Features of pseudo-NMOS logic

Advantages

☐ Low area cost → only N+1 transistors are needed for an N-input gate

☐ Low input gate-load capacitance → C_{gn}

Disadvantage

☐ Non-zero static power dissipation
Pseudo-NMOS XOR Gate

An example of XOR gate realized with pseudo-NMOS logic

The XOR is defined by

\[Y = X_1 \oplus X_2 = X_1 \overline{X_2} + \overline{X_1}X_2 = \overline{X_1X_2} + \overline{X_1}X_2 = X_1X_2 + X_1 + X_2 \]
Choosing Transistor Sizes

- **Goals**
 - Noise margin
 - Power consumption
 - Speed

- **Noise margin**
 - It is affected by the low output voltage (V_L)
 - V_L is determined by β_p / β_n

- **Speed**
 - The larger the W/L of the load transistor, the faster the gate will be, particularly when driving many other gates
 - Unfortunately, this increases the power dissipation and the area of the driver network
Choosing Transistor Sizes

- **Power dissipation**
 - A pseudo-NMOS logic gate having a “1” output has no static (DC) power dissipation.
 - However, a pseudo-NMOS gate having a “0” output has a static power dissipation.
 - The static power dissipation is equal to the current of the PMOS load transistor multiplied by the power supply voltage. Thus, the power is given by
 \[P_{dc} = \frac{\mu_p C_{ox}}{2} \left(\frac{W}{L} \right)_P (V_{gs} - V_{tp})^2 V_{dd} \]
 - The large PMOS results in large power dissipation.

- **Power-reduction methods**
 - Select an appropriate PMOS
 - Increase the bias voltage of PMOS
Choosing Transistor Sizes

- A simple procedure for choosing transistor sizes of pseudo-NMOS logic gates
 - The relative size \((W/L)\) of the PMOS load transistor is chosen as a compromise between speed and size versus power dissipation.
 - Once the size of the load transistor has been chosen, then a simple procedure can be used to choose the \(W/L\)s of the NMOS transistors in the NMOS network.
 - Let \((W/L)_{eq}\) be equal to one-half of the \(W/L\) of the PMOS load transistor.
 - For each transistor \(Q_i\), determine the maximum number of drive transistors it will be in series, for all possible inputs. Denote this number \(n_i\).
 - Take \((W/L)_i = n_i(W/L)_{eq}\)
Choose appropriate sizes for the pseudo-NMOS logic gate shown below

- \((W/L)_8\) is 5\,\text{um}/0.8\,\text{um}
- \((W/L)_{eq}\) is \((5/0.8)/2 = 3.125\)
- Gate lengths of drive transistors are taken at their minimum 0.8\,\text{um}
- Thus we can obtain

<table>
<thead>
<tr>
<th>Transistor</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_1</td>
<td>2.5,\text{um}/0.8,\text{um}</td>
</tr>
<tr>
<td>Q_2</td>
<td>5.0,\text{um}/0.8,\text{um}</td>
</tr>
<tr>
<td>Q_3</td>
<td>5.0,\text{um}/0.8,\text{um}</td>
</tr>
<tr>
<td>Q_4</td>
<td>10,\text{um}/0.8,\text{um}</td>
</tr>
<tr>
<td>Q_5</td>
<td>10,\text{um}/0.8,\text{um}</td>
</tr>
<tr>
<td>Q_6</td>
<td>10,\text{um}/0.8,\text{um}</td>
</tr>
<tr>
<td>Q_7</td>
<td>10,\text{um}/0.8,\text{um}</td>
</tr>
</tbody>
</table>
Dynamic Logic

- To eliminate the static power dissipation of pseudo-NMOS logic
 - An alternative technique is to use dynamic precharging called dynamic logic as shown below

- Normally, during the time the output is being precharged, the NMOS network should not be conducting
 - This is usually not possible
Dynamic Logic

- Another dynamic logic technique

Two-phase operation: precharge & evaluate
- This can fully eliminate static power dissipation
Examples of Dynamic Logic

Two examples

\[Z = (A + B).C \]

\[Y = ABC \]
Problems of Dynamic Logic

- Two major problems of dynamic logic
 - Charge sharing
 - Simple single-phase dynamic logic can not be cascaded

- Charge sharing

\[CV_{DD} = (C + C_1 + C_2)V_A \]

\[V_A = \frac{C}{C + C_1 + C_2}V_{DD} \]

E.g., if \(C_1 = C_2 = 0.5C \)
then output voltage is \(V_{DD}/2 \)
Problems of Dynamic Logic

- Simple single-phase dynamic logic cannot be cascaded

![Diagram of two cascaded logic circuits with input, clock, and erroneous state regions labeled.]
CMOS Domino Logic

- Domino logic can be cascaded
- The basic structure of domino logic

Some limitations of this structure:
- Each gate must be buffered
- Only noninverting structures are possible
A Domino Cascade

An example of cascaded domino logics

Stage 1
Stage 2
Stage 3

precharge
evaluate
Charge-Keeper Circuits

- The domino cascade must have an evaluation interval that is long enough to allow every stage time to discharge
 - This means that charge sharing and charge leakage processes that reduce the internal voltage may be limiting factors

- Two types of modified domino logics can cope with this problem
 - Static version
 - Latched version
Charge-Keeper Circuits

- **Modified domino logics**

![Diagram of Charge-Keeper Circuits]

- The aspect ratio of the charge-keeper MOS must be small so that it does not interfere with discharge event.

Advanced Reliable Systems (ARES) Lab.
Jin-Fu Li, EE, NCU
Complex Domino Gate

- In a complex domino gate, intermediate nodes have been provided with their own precharge transistor.
Multiple-Output Domino Logic

- Multiple-output domino logic (MODL) allows two or more outputs from a single logic gate
- The basic structure of MODL
A Multiple-Output Domino Logic Gate

CLK → A → A' → B' → B → C → C' → C → D → D' → F_1 A ⊕ B ⊕ C ⊕ D

CLK → A → A' → B' → B → C → C' → C → D → D' → F_2 A ⊕ B ⊕ C

CLK → A → A' → B' → B → C → C' → C → D → D' → F_3 A ⊕ B
NP Domino Logic

- A further refinement of the domino logic is shown below
 - The domino buffer is removed, while cascaded logic blocks are alternately composed of P- and N-transistors
NP Domino Logic

NP domino logic with multiple fanouts
Advanced CMOS Logic Design

☐ Pass-Transistor Logic
Pass-Transistor Logic

- Model for pass transistor logic

![Pass-Transistor Logic Diagram]

- The product term
 - \(F = P_1V_1 + P_2V_2 + \ldots + P_nV_n \)
 - The pass variables can take the values \(\{0, 1, X_i, -X_i, Z\} \), where \(X_i \) and \(-X_i \) are the true and complement of the \(\ ith \) input variable and \(Z \) is the high-impedance.
Pass-Transistor Logics

- Different types of pass-transistor logics for two-input XNOR gate implementation

Complementary Single-polarity Cross-coupled
Full-Swing Pass-Transistor Logic

- Modifying NMOS pass-transistor logic so full-level swings are realized

- Adding the additional PMOS has another advantages
 - It adds hysteresis to the inverter, which makes it less likely to have glitches
Differential Logic Design

- Features of the differential logic design
 - Logic inversions are trivially obtained by simply interchanging wires without incurring a time delay
 - The load networks will often consist of two cross-coupled PMOS only. This minimizes both area and the number of series PMOS transistors

- Disadvantage
 - Two wires must be used to represent every signal, the interconnect area can be significantly greater. In applications in which only a few close gates are being driven, this disadvantage is often not as significant as the advantages

- Thus differential logic circuits are often a preferable consideration
A Fully Differential Logic Circuit

- One simple and popular approach for realizing differential logic circuit is shown below
 - The inputs to the drive network come in pairs, a single-ended signal and its inverse
 - The NMOS network can be divided into two separate networks, one between the inverting output and ground, and a complementary network between the noninverting output and ground
Examples

- Differential CMOS realizations of AND and OR functions

![Diagram of CMOS realizations of AND and OR functions]
Examples

- Differential CMOS realization of the function $V_{out} = (A + B')C + A'E$
Differential Split-Level Logic

- Differential split-level (DSL) logic
 - A variation of fully differential logic
 - A compromise between a cross-coupled load with no d.c. power dissipation and a continuously-on load with d.c. power dissipation

![Differential NMOS Network Diagram](image-url)
Differential Split-Level Logic

- Features of DSL logic
 - The loads have some of the features of both continuous loads and cross-coupled load
 - Both outputs begin to change immediately
 - The loads do have d.c. power dissipation, but normally much less than pseudo-NMOS gates and dynamic power dissipation
 - The nodes V+, V-, and all internal nodes of the NMOS network have voltage changes between greater than 0V and \(V_{ref} - V_{tn} \)
 - This reduced voltage swing increases the speed of the logic gates
 - The maximum drain-source voltage across the NMOS transistors is reduced by about one-half
 - This greatly minimizes the short-channel effects
Differential Pass-Transistor Logic

- It is not necessary to wait until one side goes to low before the other side goes high
 - Pass-transistor networks for most required logic functions exist in which both sides of the cross-coupled loads are driven simultaneously
 - This minimizes the time from when the inputs change to when the low-to-high transition occurs
Differential Pass-Transistor Logic

- Other features of pass-transistor logic
 - It removes the ratio requirements on the logic and has guaranteed functionality
 - The cross-coupled loads restore signal levels to full V_{dd} levels, thereby eliminating the voltage drop

- Examples:
Dynamic Differential Logic

- A differential Domino logic gate

\[V_{\text{out}}^- \quad \text{CLK} \quad V_{\text{out}}^+ \]

Differential NMOS Network

\[V_{1^+}, V_{1^-}, V_{n^+}, V_{n^-} \]

Advanced Reliable Systems (ARES) Lab.

Jin-Fu Li, EE, NCU
Dynamic Differential Logic

- Features of dynamic Domino logic
 - Its d.c. power dissipation is very small, whereas its speed still quite good.
 - Because of the buffers at the output, its output drive capability is also very good.
 - One of major limitations of Domino logic, the difficulty in realizing inverting functions, is eliminated because of the differential nature of the circuits.
Dynamic Differential Logic

When the fan-out is small, the inverters at the output can be eliminated and the inputs to the charge-keeper transistors can be taken from the opposite output.
Dynamic Differential Logic

- Dynamic differential logics without charge-keeper circuit

\[(abcd) = (0000)\]

Clocked version

A 4-way XOR gate
Clocked CMOS (C^2MOS)

- **Structure of a C^2MOS gate**
 - Ideally, clocks are non-overlapping $\Rightarrow CLK \times CLK = 0$
 - $CLK=1$, f is valid
 - $CLK=0$, the output is in a high-impedance state. During this time interval, the output voltage is held on C_{out}
Examples of C^2MOS Logic Gates
The problem of charge leakage

- Cause that the output node cannot hold the charge on V_{out} very long

The basics of charge leakage are shown below

Assume i_{out} is a constant I_L

\[
i_{out} = i_n - i_p = -C_{out} \frac{dV}{dt}
\]

\[
\Rightarrow dV = -\frac{i_{out}}{C_{out}} dt
\]

\[
\frac{\int_{V_1}^{V(t)} dV}{V(t)} = -\int_0^t \frac{I_L}{C_{out}} dt \Rightarrow V(t) = V_1 - \frac{I_L}{C_{out}} t
\]

\[
V(t_h) = V_1 - \frac{I_L}{C_{out}} t_h = V_X
\]

\[
\Rightarrow t_h = \frac{C_{out}}{I_L} (V_1 - V_X)
\]
I/O Pads

- **Types of pads**
 - V_{dd}, V_{ss} pad
 - Input pad (ESD)
 - Output pad (driver)
 - I/O pad (ESD+driver)

- **All pads need guard ring for latch-up protection**

- **Core-limited pad & pad-limited pad**

![Diagram showing Core-limited pad and Pad-limited pad](Image)
ESD Protection

- Input pad without *electrostatic discharge* (ESD) protection

 Assume $I=10\mu A$, $C_g=0.03pF$, and $t=1\mu s$
 The voltage that appears on the gate is about 330volts

- Input pad with ESD protection
Tristate & Bidirectional Pads

- **Tristate pad**

- **Bidirectional pad**
Schmitt Trigger Circuit

- Voltage transfer curve of Schmitt circuit

![Voltage transfer curve of Schmitt circuit](image)

- Hysteresis voltage $V_H=V_{T_+}-V_{T_-}$
- When the input is rising, it switches when $V_{in}=V_{T_+}$
- When the input is falling, it switches when $V_{in}=V_{T_-}$
Schmitt Trigger Circuit

- Voltage waveform for slow input

- Schmitt trigger turns a signal with a very slow transition into a signal with a sharp transition
A CMOS version of the Schmitt trigger circuit

When the input is rising, the V_{GS} of the transistor N_2 is given by $V_{GS2} = V_{in} - V_{FN}$.

When $V_{in} = V_{T+}$, N_2 enters in conduction mode which means $V_{GS2} = V_{Tn}$.

Then $V_{FN} = V_{T+} - V_{Tn}$.
Summary

- The following topics have been introduced in this chapter:
 - CMOS Logic Gate Design
 - Advanced CMOS Logic Design
 - Clocking Strategies
 - I/O Structures