Chapter 2
MOS Transistor Theory

Jin-Fu Li
Advanced Reliable Systems (ARES) Lab.
Department of Electrical Engineering
National Central University
Jhongli, Taiwan
Outline

- Introduction
- I-V Characteristics of MOS Transistors
- Nonideal I-V Effects
- Pass Transistor
- Summary
MOS Transistor

- MOS transistors conduct electrical current by using an applied voltage to move charge from the source side to the drain side of the device.
- An MOS transistor is a majority-carrier device.
- In an *n*-type MOS transistor, the majority carriers are electrons.
- In a *p*-type MOS transistor, the majority carriers are holes.
- Threshold voltage:
 - It is defined as the voltage at which an MOS device begins to conduct (“turn on”).
- MOS transistor symbols:

 NMOS: \[\text{\includegraphics[width=0.2\textwidth]{nmos.png}}\]
 PMOS: \[\text{\includegraphics[width=0.2\textwidth]{pmos.png}}\]
MOS Transistor

- So far, we have treated transistors as ideal switches
- An ON transistor passes a finite amount of current
 - Depends on terminal voltages
 - Derive current-voltage (I-V) relationships
- Transistor gate, source, drain all have capacitance
 - \(I = C \left(\frac{\Delta V}{\Delta t} \right) \rightarrow \Delta t = \frac{C}{I} \Delta V \)
 - Capacitance and current determine speed
- The structure of a MOS transistor is symmetric
 - Terminals of source and drain of a MOS can be exchanged
V_g & Channel for P-Type Body

Accumulation mode

$V_g < 0$

![Polysilicon Gate](image1)

![Silicon Dioxide Insulator](image2)

![P-type Body](image3)

Depletion mode

$0 < V_g < V_t$

![Depletion Region](image4)

Inversion mode

$V_g > V_t$

![Inversion Region](image5)
NMOS Transistor in Cutoff Mode

- **Cutoff region**
 - The source and drain have free electrons
 - The body has free holes but no free electrons
 - The junction between the body and the source or drain are reverse-biased, so almost zero current flows
NMOS Transistor in Linear Mode

Linear region

- A.k.a. resistive, nonsaturated, or unsaturated region
- If $V_{gd} = V_{gs}$, then $V_{ds} = V_{gs} - V_{gd} = 0$ and there is no electrical field tending to push current from drain to source
- If $V_{gs} > V_{gd} > V_t$, then $0 < V_{ds} < V_{gs} - V_t$ and there is a small positive potential V_{ds} is applied to the drain, current I_{ds} flows through the channel from drain to source
- The current increases with both the drain and gate voltage
NMOS Transistor in Saturation Mode

- **Saturation region**
 - The \(V_{ds} \) becomes sufficiently large that \(V_{gd} < V_t \), the channel is no longer inverted near the drain and becomes pinched off.
 - However, conduction is still brought about by the drift of electrons under the influence of the positive drain voltage.
 - As electrons reach the end of the channel, they are injected into the depletion region near the drain and accelerated toward the drain.
 - The current \(I_{ds} \) is controlled by the gate voltage and ceases to be influenced by the drain.
NMOS Transistor

- In summary, the NMOS transistor has three modes of operations:
 - If $V_{gs}<V_t$, the transistor is cutoff and no current flows.
 - If $V_{gs}>V_t$ and V_{ds} is small, the transistor acts as a linear resistor in which the current flow is proportional to V_{ds}.
 - If $V_{gs}>V_t$ and V_{ds} is large, the transistor acts as a current source in which the current flow becomes independent of V_{ds}.

- The PMOS transistor operates in just the opposite fashion.
I-V Characteristics of MOS

- In linear and saturation regions, the gate attracts carriers to form a channel.
- The carriers drift from source to drain at a rate proportional to the electric field between these regions.
- MOS structure looks like parallel plate capacitor while operating in inversion.

![Diagram of MOS structure](image-url)

- Gate-oxide-channel
Channel Charge

- \(Q_{\text{channel}} = C_g (V_{gc} - V_t) \), where \(C_g \) is the capacitance of the gate to the channel and \(V_{gc} - V_t \) is the amount of voltage attracting charge to the channel beyond the minimal required to invert from p to n.

- \(V_c = (V_s + V_d)/2 = V_s + V_{ds}/2 \)

- Therefore, \(V_{gc} = (V_{gs} + V_{gd})/2 = V_{gs} - V_{ds}/2 \)
Gate Capacitance (C_g)

- Transistor dimensions

The gate capacitance is

\[C_g = \varepsilon_{ox} \frac{WL}{t_{ox}} \]
Carrier Velocity

- Charge is carried by e-
- Carrier velocity v proportional to lateral E-field between source and drain
- $v = \mu E$, where μ is called mobility
- $E = \frac{V_{ds}}{L}$
- Time for carrier to cross channel:
 - $t = \frac{L}{v}$
Now we know

- How much charge Q_{channel} is in the channel
- How much time t each carrier takes to cross

$$I_{ds} = \frac{Q_{\text{channel}}}{t}$$

$$= \mu C_{ox} \frac{W}{L} \left(V_{gs} - V_t - \frac{V_{ds}}{2} \right) V_{ds}$$

$$= \beta \left(V_{gs} - V_t - \frac{V_{ds}}{2} \right) V_{ds}$$

Where $\beta = \mu C_{ox} \frac{W}{L}$
NMOS Saturation I-V

- If $V_{gd} < V_t$, channel pinches off near drain
 - When $V_{ds} > V_{dsat} = V_{gs} - V_t$
- Now drain voltage no longer increases current

$$I_{ds} = \beta \left(V_{gs} - V_t - \frac{V_{dsat}}{2} \right) V_{dsat}$$

$$= \frac{\beta}{2} \left(V_{gs} - V_t \right)^2$$
Summary of NMOS I-V Characteristics

\[I_{ds} = \begin{cases}
0 & V_{gs} < V_t \\
\beta \left(V_{gs} - V_t - \frac{V_{ds}}{2}\right) V_{ds} & V_{ds} < V_{dsat} \\
\frac{\beta}{2} \left(V_{gs} - V_t\right)^2 & V_{ds} > V_{dsat}
\end{cases} \]

cutoff
linear
saturation
Example

- Assume that the parameters of a technology are as follows
 - $t_{ox} = 100 \, \text{Å}$
 - $\mu = 350 \, \text{cm}^2/\text{V} \cdot \text{s}$
 - $V_t = 0.7 \, \text{V}$

- Plot I_{ds} vs. V_{ds}
 - $V_{gs} = 0, 1, 2, 3, 4, 5$
 - Use $W/L = 4/2$

\[
\beta = \mu C_{ox} \frac{W}{L} = 350 \frac{cm^2}{V \cdot s} \left(\frac{3.9 \cdot 8.85 \cdot 10^{-14} \frac{F}{cm}}{100 \cdot 10^{-8} \frac{cm}{V}} \right) \left(\frac{W}{L} \right) = 120 \frac{W}{L} \mu A / V^2
\]
Nonideal I-V Effects

- Nonideal I-V effects
 - Velocity saturation, mobility degradation, channel length modulation, subthreshold conduction, body effect, etc.

- The saturation current increases less than quadratically with increasing V_{gs}. This is caused by two effects:
 - Velocity saturation
 - Mobility degradation

- Velocity saturation
 - At high lateral field strengths (V_{ds}/L), carrier velocity ceases to increase linearly with field strength
 - Result in lower I_{ds} than expected at high V_{ds}

- Mobility degradation
 - At high vertical field strengths (V_{gs}/t_{ox}), the carriers scatter more often
 - Also lead to less current than expected at high V_{gs}
Channel Length Modulation

- Ideally, I_{ds} is independent of V_{ds} for a transistor in saturation, making the transistor a perfect current source
 $$I_{ds} = \frac{1}{2} \mu \frac{W}{L} C_{ox} (V_{gs} - V_t)^2$$

- Actually, the width L_d of the depletion region between the channel and drain is increased with V_{db}. To avoid introducing the body voltage into our calculations, assume the source voltage is close to the body voltage so $V_{db} \sim V_{ds}$
 - Thus the effective channel length is shorten to $L_{eff} = L - L_d$
 - Therefore, the I_{ds} can be expressed as
 $$I_{ds} = \frac{1}{2} \mu \frac{W}{L_{eff}} C_{ox} (V_{gs} - V_t)^2 = \frac{1}{2} \mu \frac{W}{L} C_{ox} (V_{gs} - V_t)^2 \frac{1}{1 - \frac{L_d}{L}}$$
 - Assume that $\frac{L_d}{L} \ll 1$, then
 $$I_{ds} = \frac{1}{2} \mu \frac{W}{L} C_{ox} (V_{gs} - V_t)^2 \left(1 + \frac{L_d}{L} \right) = \frac{1}{2} \mu \frac{W}{L} C_{ox} (V_{gs} - V_t)^2 \left(1 + \lambda V_{ds} \right)$$
Channel Length Modulation

- The parameter λ is an empirical channel length modulation factor.
- As channel length gets shorter, the effect of the channel length modulation becomes relatively more important.
 - Hence λ is inversely dependent on channel length.
- This channel length modulation model is a gross oversimplification of nonlinear behavior and is more useful for conceptual understanding than for accurate device modeling.
- Channel length modulation is very important to analog designers because it reduces the gain of amplifiers. It is generally unimportant for qualitatively understanding the behavior of digital circuits.
Body Effect

- Body effect
 - V_t is a function of voltage between source and substrate

![Graph showing V_T as a function of V_{BS}]
Mobility Variation

- **Mobility \(\mu \)**
 - It describes the ease with which carriers drift in the substrate material
 - It is defined by
 \[\mu = \frac{\text{average carrier drift velocity, } v}{\text{electrical field, } E} \]

- Mobility varies according to the type of charge carrier
 - Electrons have a higher mobility than holes
 - Thus NMOS has higher current-producing capability than the corresponding PMOS

- Mobility decreases with increasing doping-concentration and increasing temperature
Drain Punchthrough & Hot Electrons

- **Drain punchthrough**
 - When the drain voltage is high enough, the depletion region around the drain may extend to source. Thus, causing current to flow irrespective of the gate voltage.

- **Hot electrons**
 - When the source-drain electric field is too large, the electron speed will be high enough to break the electron-hole pair. Moreover, the electrons will penetrate the gate oxide, causing a gate current.
Subthreshold Conduction

- **Subthreshold region**
 - The cutoff region is also referred to as the subthreshold region, where I_{ds} increases exponentially with V_{ds} and V_{gs}.
 - Observe in the following figure that at $V_{gs} < V_{t}$, the current drops off exponentially rather than abruptly becoming zero.
Junction Leakage

- The p-n junctions between diffusion and the substrate or well form diodes.
- The p-type and n-type substrates are tied to GND or V_{dd} to ensure these diodes remain reverse-biased.
- However, reverse-biased diodes still conduct a small amount of current I_L.

 $I_L = I_S(e^{v_T} - 1)$, V_D: diode voltage; v_T: thermal voltage (about 26mv at room temperature).

- In modern transistors with low threshold voltages, subthreshold conduction far exceeds junction leakage.
Temperature Dependence

- The magnitude of the threshold voltage decreases nearly linearly with temperature.
- Carrier mobility decreases with temperature.
- Junction leakage increases with temperature because I_s is strongly temperature dependent.
- The following figure shows how the current I_{dsat} decreases with temperature.
Geometry Dependence

- The layout designer draws transistors with width and length W_{draw} and L_{draw}. The actual gate dimensions may differ by some factors X_W and X_L
 - E.g., the manufacturer may create masks with narrower polysilicon or may overetch the polysilicon to provide shorter channels (negative X_L)
- Moreover, the source and drain tend to diffuse laterally under the gate by L_D, producing a shorter effective channel length that the carriers must traverse between source and drain. Similarly, diffusion of the bulk by W_D decreases the effective channel width
- Therefore, the actually effective channel length and width can be expressed as
 - $L_{\text{eff}} = L_{\text{draw}} + X_L - 2L_D$
 - $W_{\text{eff}} = W_{\text{draw}} + X_W - 2W_D$
MOS Small Signal Model

\((V_{sb}=0) \)

\[I_{ds} = \mu \frac{W}{L} C_{ox} [(V_{gs} - V_t)V_{ds} - \frac{1}{2} V_{ds}^2] \]

\[g_{ds} = \frac{dI_{ds}}{dV_{ds}} = \mu \frac{W}{L} C_{ox} [(V_{gs} - V_t) - V_{ds}] \]

\[g_m = \frac{dI_{ds}}{dV_{gs}} \mid (V_{ds} = \text{const.}) = \mu \frac{W}{L} C_{ox} V_{ds} \]

\[g_{ds} = 0 \]

\[g_m = \mu \frac{W}{L} C_{ox} (V_{gs} - V_t) \]
Pass Transistor

- **NMOS pass transistor**
 - C_{load} is initially discharged, i.e., $V_{out}=V_{ss}$
 - If $V_{in}=V_{dd}$ and $V_{S}=V_{dd}$, the $V_{out}=V_{dd}-V_{tn}$
 - If $V_{in}=V_{ss}$ and $V_{S}=V_{dd}$, the $V_{out}=V_{ss}$

![Diagram of NMOS pass transistor]

- **PMOS pass transistor**
 - If $V_{in}=V_{dd}$ and $V_{-S}=V_{ss}$, the $V_{out}=V_{dd}$
 - If $V_{in}=V_{ss}$ and $V_{-S}=V_{ss}$, the $V_{out}=V_{tp}$

![Diagram of PMOS pass transistor]
Pass Transistor Circuits

\[V_s = V_{DD} - V_{tn} \]

\[V_s = |V_{tp}| \]

\[V_{DD} - 2V_{tn} \]
Transmission Gate

- By combining behavior of the NMOS and PMOS, we can construct a transmission gate
 - The transmission gate can transmit both logic one and logic zero without degradation

- The transmission gate is a fundamental and ubiquitous component in MOS logic
 - A multiplexer element
 - A logic structure,
 - A latch element, etc.

![Transmission Gate Diagram](image-url)
Summary

☐ Threshold drops
- Pass transistors suffer a threshold drop when passing the wrong value: NMOS transistors only pull up to $V_{DD} - V_{tn}$, while PMOS transistors only pull down to $|V_{tp}|$
- The magnitude of the threshold drop is increased by the body effect
- Fully complementary transmission gates should be used where both 0's and 1's must be passed well

☐ V_{DD}
- Velocity saturation and mobility degradation result in less current than expected at high voltage
- This means that there is no point in trying to use a high V_{DD} to achieve high fast transistors, so V_{DD} has been decreasing with process generation to reduce power consumption
- Moreover, the very short channels and thin gate oxide would be damaged by high V_{DD}
Summary

- Leakage current
 - Real gates draw some leakage current
 - The most important source at this time is subthreshold leakage between source and drain of a transistor that should be cut off
 - The subthreshold current of a OFF transistor decreases by an order of magnitude for every 60-100mV that V_{gs} is below V_t. Threshold voltages have been decreasing, so subthreshold leakage has been increasing dramatically
 - Some processes offer multiple choices of V_t; low-V_t devices are used for high performance, while high-V_t devices are used for low leakage elsewhere
 - Leakage current causes CMOS gates to consume power when idle. It also limits the amount of time that data is retained in dynamic logic, latches, and memory cells
 - In modern processes, dynamic logic and latches require some sort of feedback to prevent data loss from leakage
 - Leakage increases at high temperature