1. **Shannon’s Expansion Theorem** (4 points)

Consider a Boolean function \(f(x_1, x_2, \ldots, x_i, \ldots, x_n) \) with \(n \) variables. According to Shannon’s Expansion Theorem, we can expand the Boolean function in terms of any one of its variables \(x_i \). That is,

\[
f(x_1, x_2, \ldots, x_i, \ldots, x_n) = x_i f(x_1, x_2, \ldots, 1, \ldots, x_n) + \overline{x_i} f(x_1, x_2, \ldots, 0, \ldots, x_n).
\]

On the other hand, consider a two-input multiplexer with with the output \(f \) and the inputs \(g_1 \) and \(g_2 \) and the control signal \(x_i \). Assume that \(f = g_1 \) when \(x_i = 1 \) and \(f = g_2 \) when \(x_i = 0 \). Then, the Boolean function of the multiplexer can be expressed as \(f = x_i g_1 + \overline{x_i} g_2 \).

Complete the following questions:

(a) Realize the Boolean function \(f(x_1, x_2, x_3, x_4) = x_1 x_2 + x_3 x_4 \) using two-input multiplexers. (2 points)

(b) Can any Boolean functions be realized by two-input multiplexers? Please explain your answer. (2 points)

2. **CMOS Logic Design** (4 points)

Consider the logic diagram given in Figure 1.

![Figure 1: A combinational circuit](image)

(a) Design a CMOS circuit for implementing \(F \). (2 points)

(b) Assume that all the NMOS and PMOS transistors for realizing the \(F \) have the same size \(W/L \) and the gate capacitance of an NMOS or a PMOS transistor is 2pf. Also, the drain capacitance of the transistor and the parasitic capacitance of the wire can be ignored. Calculate the value of capacitance of the nodes \(x \) and \(y \). (2 points)

3. **MOS Theory** (2 points)

Fig. 2 shows a CMOS inverter. Assume that the body effect can be neglected. Identify the transistor(s) which cannot operate in the saturation region. Explain your answer.

![Figure 2: A CMOS inverter](image)