Chapter 3
Semiconductor Memories

Jin-Fu Li
Department of Electrical Engineering
National Central University
Jhongli, Taiwan
Outline

- Introduction
- Random Access Memories
- Content Addressable Memories
- Read Only Memories
- Flash Memories
Overview of Memory Types

Semiconductor Memories

Read/Write Memory or Random Access Memory (RAM)
- Random Access Memory (RAM)
 - Static RAM (SRAM)
 - Dynamic RAM (DRAM)
 - Register File
- Non-Random Access Memory (RAM)
 - FIFO/LIFO
 - Shift Register
 - Content Addressable Memory (CAM)

Read Only Memory (ROM)
- Mask (Fuse) ROM
- Programmable ROM (PROM)
 - Erasable PROM (EPROM)
 - Electrically EPROM (EEPROM)
- Flash Memory
- Ferroelectric RAM (FRAM)
- Magnetic RAM (MRAM)
Memory Elements – Memory Architecture

- Memory elements may be divided into the following categories:
 - Random access memory
 - Serial access memory
 - Content addressable memory

- Memory architecture

![Memory Architecture Diagram]

- row decoder
- row decoder
- row decoder
- row decoder
- column decoder

k

n-bit address

2^{m+k} bits

2^{n-k} words

2^m-bit data I/Os

column mux, sense amp, write buffers
1-D Memory Architecture

n select signals: $S_0 - S_{n-1}$

n select signals are reduced to k address signals: $A_0 - A_{k-1}$
2-D Memory Architecture

Advanced Reliable Systems (ARES) Lab.

Jin-Fu Li, EE, NCU
3-D Memory Architecture
Conceptual 2-D Memory Organization

[Diagram of 2-D memory organization with row decoder, column decoder, and memory cells labeled.]
Memory Elements – RAM

Generic RAM circuit

- Bit line conditioning
- Clocks
- RAM Cell
- Sense Amp, Column Mux, Write Buffers
- Address
- n-1:k
- k-1:0
- write data
- read data
- Write
- Clocks
RAM – SRAM Cells

6-T SRAM cell

4-T SRAM cell
RAM - DRAM Cells

4-T dynamic RAM (DRAM) cell

3-T DRAM cell
RAM – DRAM Cells

1-T DRAM cell

Layout of 1-T DRAM (right)
Write and hold operations in a DRAM cell

\[V_s = V_{\text{max}} = V_{DD} - V_{tn} \]
\[Q_{\text{max}} = C_s (V_{DD} - V_{tn}) \]
RAM – DRAM Retention Time

Charge leakage in a DRAM Cell

\[I_L = -\left(\frac{dQ_s}{dt}\right) \]

\[I_L = -C_s \left(\frac{dV_s}{dt}\right) \]

\[I_L \approx -C_s \left(\frac{\Delta V_s}{\Delta t}\right) \]

\[t_h \approx |\Delta t| \approx \left(\frac{C_s}{I_L}\right) \Delta V_s \]
As an example, if $I_L=1nA$, $C_s=50fF$, and the difference of V_s is $1V$, the hold time is

$$t_h = \frac{50 \times 10^{-15}}{1 \times 10^{-9}} \times 1 = 0.5\mu s$$

Memory units must be able to hold data so long as the power is applied. To overcome the charge leakage problem, DRAM arrays employ a refresh operation where the data is periodically read from every cell, amplified, and rewritten.

The refresh cycle must be performed on every cell in the array with a minimum refresh frequency of about

$$f_{\text{refresh}} \approx \frac{1}{2t_h}$$
This shows that $V_f<V_s$ for a store logic 1. In practice, V_f is usually reduced to a few tenths of a volt, so that the design of the sense amplifier becomes a critical factor.
RAM – SRAM Read Operation

Vdd precharge

[Diagram of SRAM read operation showing precharge, word line, bit, and data signals]
RAM – SRAM Read Operation

Vdd-Vtn precharge

Diagram of SRAM Read Operation with labels for precharge, word line, bit, and data.
RAM – SRAM Read Operation

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU
RAM – Write Operation

write data
write
word
bit, -bit
cell, -cell
RAM - Write Operation

[diagram of RAM write operation with labels and connections]
RAM – Row Decoder
RAM - Row Decoder

Complementary AND gate

Pseudo-nMOS gate
RAM – Row Decoder

Symbolic layout of row decoder
RAM – Row Decoder

Symbolic layout of row decoder

Advanced Reliable Systems (ARES) Lab.
Jin-Fu Li, EE, NCU
RAM - Row Decoder

Predecode circuit
Actual implementation

Pseudo-nMOS example
RAM - Column Decoder

bit<7> bit<6> bit<5> bit<4> bit<3> bit<2> bit<1> bit<0>

-a0 -a0 a1 -a1 a2 -a2

selected-data

to sense amps and write ckts

-a-selected-data

Advanced Reliable Systems (ARES) Lab.

Jin-Fu Li, EE, NCU
RAM – Multi-port RAM
RAM – Expandable Reg. File Cell

Advanced Reliable Systems (ARES) Lab.
Jin-Fu Li, EE, NCU
Specific Memory – **FIFO**

Two port RAM

- Write-Data
- Write-Address
- Write-Clock
- Full

- Read-Data
- Read-Address
- Read-Clock
- Empty

FIFO Write (Read) address control design

```
<table>
<thead>
<tr>
<th>Write (Read)</th>
<th>rst</th>
<th>clk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write (Read)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Write (Read)</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
```

\[WP (RP) = \text{incrementer} \]

\[WP (RP) = 1 \]
Specific Memory – **LIFO**

LIFO (Stack)

Require:
- Single port RAM
- One address counter
- Empty/Full detector

Algorithm:
- **Write**: write current address
 - Address = Address + 1
- **Read**: Address = Address - 1
 - read current address
- **Empty**: Address = 0
- **Full**: Address = FFF…
Specific Memory – LIFO

LIFO address control design

Write

Read

Write

rst
clk

-1
decrementer

1

1

Empty

Full

incrementer
Specific Memory – SIPO

SIPO cell design

SIPO

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU
Specific Memory – Tapped Delay Line

![Tapped Delay Line Diagram]

- delay<5>
- delay<4>
- delay<3>
- delay<2>
- delay<1>
- delay<0>

- din
- dout

- Clk
- 32-stage SR
- 16-stage SR
- 8-stage SR
- 4-stage SR
- 2-stage SR
- 1-stage SR

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU
Read-Only Memories

- Read-Only Memories are nonvolatile
 - Retain their contents when power is removed
- Mask-programmed ROMs use one transistor per bit
 - Presence or absence determines 1 or 0
Non-volatile Memory – ROM

4x4 NOR-type ROM

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU
Non-volatile Memory – ROM

4x4 NAND-type ROM

\[V_{dd} \]

\[WL0 \]
\[BL0 \]
\[BL1 \]
\[WL1 \]
\[BL2 \]
\[WL2 \]
\[BL3 \]
\[WL3 \]

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU
4-word x 6-bit ROM

- Represented with dot diagram
- Dots indicate 1’s in ROM

Word 0: 010101
Word 1: 011001
Word 2: 100101
Word 3: 101010

Looks like 6 4-input pseudo-nMOS NORs
ROM Array Layout

- Unit cell is $12 \times 8 \lambda$ (about 1/10 size of SRAM)
Row Decoders

- ROM row decoders must pitch-match with ROM
 - Only a single track per word!
Complete ROM Layout
Building Logic with ROMs

- Use ROM as lookup table containing truth table
 - n inputs, k outputs requires 2^n words x k bits
 - Changing function is easy – reprogram ROM

- Finite State Machine
 - n inputs, k outputs, s bits of state
 - Build with 2^{n+s} x (k+s) bit ROM and (k+s) bit reg
Specific Memory – **CAM**

- Content addressable memories (CAMs) play an important role in digital systems and applications such as communication, networking, data compression, etc.
- Each storage element of a CAM has the hardware capability to store and compare its contents with the data broadcasted by the control unit.
- CAM types
 - dynamic or static
 - binary or ternary
- The **binary static CAM** is discussed
Difference Between RAM and CAM

RAM:
- Address
- R/W
- Data

CAM:
- Data
- Cmd
- Hit
- Address

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU
CAM – Applications

CAM architecture

Data → CAM Memory Array
N×M-bit words → Match

Cache architecture

Data In → CAM Memory Array
N×M-bit words → Match

Match 0
Match 1
Match 2
Match 3
Match 4
Match 5

→ RAM

Word 0
Word 1
Word 2
Word 3
Word 4
Word 5

↑ Data I/Os
CAM – Architecture

Comparand Register

Mask Register

Memory Array

Valid Bit

Address Decoder

Input

Address Decoder

I/O Register

Responder

Hit

Address Output

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU
CAM – Basic Components

- **Comparand Register**
 - It contains the data to be compared with the content of the memory array

- **Mask Register**
 - It is used to mask off portions of the data word(s) which do not participate in the operations

- **Memory Array**
 - It provides storage and search (compare) medium for data

- **Responder**
 - It indicates success or failure of a compare operation
CAM – Binary Cell

CAM cell

Advanced Reliable Systems (ARES) Lab.
Jin-Fu Li, EE, NCU
CAM – Word Structure

\[
\begin{align*}
&\text{bit}[0] & \overline{\text{bit}[0]} & \text{bit}[w-1] & \overline{\text{bit}[w-1]} \\
&W_i & \text{comparison logic} & V_{dd} & M_i
\end{align*}
\]
CAM - Organization

CAM circuit

Match Data In

Read Data (Test)

Normal RAM Read/Write Circuitry

precharge

Hit

Match0

Match1

Match2

Match3
Non-volatile Memory – Flash Memory

- **Flash memory**
 - A nonvolatile, in-system-updateable, high-density memory technology that is per-bit programmable and per-block or per-chip erasable

- **In-system updateable**
 - A memory whose contents can be easily modified by the system processor

- **Block size**
 - The number of cells that are erased at the same time

- **Cycling**
 - The process of programming and erasing a flash memory cell
Flash Memory – Definition

- **Erase**
 - To change a flash memory cell value *from 0 to 1*

- **Program**
 - To change a flash memory cell value *from 1 to 0*

- **Endurance**
 - The capability of maintaining the stored information after erase/program/read cycling

- **Retention**
 - The capability of keeping the stored information in time
Basics

☐ How can a memory cell commute from one state to the others independently of external condition?
 - One solution is to have a transistor with a threshold voltage that can change repetitively from a high to a low state
 - The high state corresponding to the binary value “1”
 - The low state corresponding to the binary value “0”

☐ Threshold voltage of a MOS transistor
 - \(V_T = K - Q' / C_{ox} \)
 - \(K \) is a constant depending on the gate and substrate material, doping, and gate oxide thickness
 - \(Q' \) is the charge in the gate oxide
 - \(C_{ox} \) is the gate oxide capacitance
Floating Gate Transistor

- Floating gate (FG) transistor

![Floating Gate Transistor Diagram]

- Energy band diagram of an FG transistor

![Energy Band Diagram]
Flash Memory – *Threshold Voltage*

- When the voltages (V_{CG} & V_D) are applied to the control gate and the drain, the voltage at the floating gate (V_{FG}) by capacitive coupling is expressed as

 $V_{FG} = \frac{Q_{FG}}{C_{total}} + \frac{C_{FC}}{C_{total}} V_{CG} + \frac{C_{FD}}{C_{total}} V_D$

- $C_{total} = C_{FC} + C_{FS} + C_{FB} + C_{FD}$

- The minimum control gate voltage required to turn on the control gate is

 $V_T(CG) = \frac{C_{total} V_T(FG)}{C_{FC}} - \frac{Q_{FG}}{C_{FC}} - \frac{C_{FD}}{C_{FC}} V_D$

 where $V_T(FG)$ is the threshold voltage to turn on the floating gate transistor

- The difference of threshold voltages between two memory data states ("0" and "1") can be expressed as

 $\Delta V_T(CG) = -\frac{\Delta Q_{FG}}{C_{FC}}$
Two major flash memory structures

- NOR & NAND

NOR structure

- Simplest
- Dual power supply
- Large block size

NAND structure

- Intermediate block size
- High-speed and high density
- For storage applications
Flash Memory – Structures

NOR structure

NAND structure
Program operation of the Intel’s ETOX flash cells (NOR structure)

- Apply 6V between drain and source
 - Generates hot electrons that are swept across the channel from source to drain
- Apply 12 V between source and control gate
 - The high voltage on the control gate overcomes the oxide energy barrier, and attracts the electrons across the thin oxide, where they accumulate on the floating gate
- Called channel hot-electron injection (HEI)
Flash Memory – Erase Operation

- Erase operation of the Intel’s ETOX flash cells (NOR structure)
 - Floating the drain, grounding the control gate, and applying 12V to the source
 - A high electric field pulls electrons off the floating gate
 - Called Fowler-Nordheim (FN) tunneling

![Flash Memory Diagram](image-url)
Flash Memory – *Erase Operation*

- Threshold voltage depends on oxide thickness
- Flash memory cells in the array may have slightly different gate oxide thickness, and the erase mechanism is not self-limiting
- After an erase pulse we may have “typical bits” and “fast erasing bits”
Read operation of the Intel’s ETOX flash cells (NOR structure)

- Apply 5V on the control gate and drain, and source is grounded
- In an erased cell, the $V_C > V_T$
 - The drain to source current is detected by the sense amplifier
- In a programmed cell, the $V_C < V_T$
 - The applied voltage on the control gate is not sufficient to turn it on. The absence of current results in a 0 at the corresponding flash memory output
Flash Memory – Concept of Multi-Level Flash Memories

- 1 bit/cell => 2 levels
- 2 bit/cell => 4 levels

Source: Proceedings of IEEE, 2003
Flash Memory – Basic Building Blocks of NOR Flash

Source: Proceedings of IEEE, 2010
Flash Memory – NAND Flash Functional Block Diagram

Source: Micron
Flash Memory – NAND Flash Array Organization

1 page = (2K + 64 bytes)
1 block = (2K + 64) bytes x 64 pages = (128K + 4K) bytes
1 plane = (128K + 4K) bytes x 2,048 blocks = 2,112Mb
1 device = 2,112Mb x 2 planes = 4,224Mb

Source: Micron