Training Course of SOC Encounter

REF:
• CIC Training Manual – Cell-Based IC Physical Design and Verification with SOC Encounter, July, 2006

Speaker: C. –S. Hou
Outline

- Basic Concept of the Placement & Routing
- Auto Place and Route Using SOC Encounter
- Hard Block Abstraction Using Abstract Generator
- LAB
Basic Concept of the Placement & Routing
Cell-Based Design Flow

System Level
- MATLAB/ C/ C++/ System C/ ADS/ Covergen (MaxSim)
- Memory Generator

RTL Level
- Verilog/ VHDL
- NC-Verilog/ ModelSim Debussy (Verdi)/ VCS
- Conformal/ Formality
- Design/ Power Compiler
- DFT Compiler/ TetraMAX
- NC-Verilog/ ModelSim Debussy (Verdi)/ VCS
- SOC Encounter/ Astro
- GDS II
- DRC/ LVS (Calibre)
- PVS: Calibre xRC/ NanoSim (Time/ Power Mill)

Gate Level
- Physical Compiler/ Magma Blast Fusion

Logic Synthesis
- Verilog/ VHDL
- NC-Verilog/ ModelSim Debussy (Verdi)/ VCS
- Design/ Power Compiler
- DFT Compiler/ TetraMAX
- NC-Verilog/ ModelSim Debussy (Verdi)/ VCS
- SOC Encounter/ Astro
- GDS II
- DRC/ LVS (Calibre)
- PVS: Calibre xRC/ NanoSim (Time/ Power Mill)

Design for Test
- Verilog/ VHDL
- NC-Verilog/ ModelSim Debussy (Verdi)/ VCS
- Design/ Power Compiler
- DFT Compiler/ TetraMAX
- NC-Verilog/ ModelSim Debussy (Verdi)/ VCS
- SOC Encounter/ Astro
- GDS II
- DRC/ LVS (Calibre)
- PVS: Calibre xRC/ NanoSim (Time/ Power Mill)

Layout Level
- SOC Encounter/ Astro
- GDS II
- DRC/ LVS (Calibre)
- PVS: Calibre xRC/ NanoSim (Time/ Power Mill)

Post-Layout Verification
- SOC Encounter/ Astro
- GDS II
- DRC/ LVS (Calibre)
- PVS: Calibre xRC/ NanoSim (Time/ Power Mill)

Tape Out

Advanced Reliable Systems (ARES) Lab.
SOC Encounter P&R Flow

- **Netlist (Verilog)**
- **Timing Constraints (sdc)**
- **IO Constraints (ioc)**

1. Specify Floorplan
2. Timing Analysis
3. Pre-CTS Optimization
4. Power Planning
5. Power Analysis

1. IO, P/G Placement
2. Clock Tree Synthesis
3. Timing Analysis
4. Post-CTS Optimization
5. Power Route
6. SI Driven Route
7. Timing/SI Analysis

GDS Netlist Spef DEF

Avanced Reliable Systems (ARES) Lab.
IO, P/G Placement

- Determine the positions of the PADs
 - Functional IO PAD
 - Power/Ground PAD
 - Corner PAD
- Just for the connection of PAD power rings

Advanced Reliable Systems (ARES) Lab.
Specify Floorplan

- Determine the aspect ratio of the Core and the gap between the PAD and Core
 - The Core Utilization is determined in this step
 - The final CHIP area is almost determined in this step

Advanced Reliable Systems (ARES) Lab.
Determine the related positions of Hard Blocks
- The performance is highly affected
Amoeba Placement

- Observe the result of cells and Hard Blocks placement
Power Planning

- Plan the power ring & power stripe
- IR-drop consideration
Power Analysis

- IR-drop & electron migration
Power Route

- Connect the power pins of standard cells to the global power lines

Advanced Reliable Systems (ARES) Lab.
Add IO Filler

- Fill the gap between PADs
 - Connect the PAD power rings
Routing

- Construct the final interconnections
Prepare Data

Library
- Physical Library (LEF)
 - Information of technology, standard cells, Hard Blocks, and APR
- Timing Library (LIB)
 - Timing information of the standard cells and Hard Blocks
- Capacitance Table
 - For more accurate RC analysis
- Celtic Library
 - For crosstalk analysis
- FireIce/Voltage Storm Library
 - For RC extraction and power analysis

User Data
- Gate-Level Netlist (Verilog)
- SDC Constraint (*.sdc)
- IO Constraint (*.ioc)
LEF Format – Process Technology

<table>
<thead>
<tr>
<th>Layers</th>
<th>Design Rule</th>
<th>Parasitic</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLY</td>
<td>Net Width</td>
<td>Resistance</td>
</tr>
<tr>
<td>Contact</td>
<td>Net Spacing</td>
<td>Capacitance</td>
</tr>
<tr>
<td>Metal 1</td>
<td>Area</td>
<td></td>
</tr>
<tr>
<td>Via1</td>
<td>Enclosure</td>
<td></td>
</tr>
<tr>
<td>Metal 2</td>
<td>Wide Metal Slot</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Antenna</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Current Density</td>
<td></td>
</tr>
</tbody>
</table>

Advanced Reliable Systems (ARES) Lab.
Layer Metal1
 TYPE ROUTING;
 WIDTH 0.28;
 MAXWIDTH 8;
 AREA 0.202;
 SPACING 0.28;
 SPACING 0.6 RANGE 10.0 10000.0;
 PITCH 0.66;
 DIRECTION VERTICAL;
 THICKNESS 0.26;
 ANTENNACUMDIFFAREARATIO 5496;
 RESISTANCE RPERSQ 1.0e-01;
 CAPACITANCE CPERSQDIST 1.11e-04;
 EDGECAPACITANCE 9.1e-05;
END Metal1
LEF Format – APR Technology

☐ Unit
☐ Site
☐ Routing Pitch
☐ Default Direction
☐ Via Rule
The placement site gives the placement grid of a family of macros.
Row Based PR

Advanced Reliable Systems (ARES) Lab.
LEF Format – APR Technology: Routing Pitch, Default Direction

Metal1 Routing Pitch

Metal2 Routing Pitch

Metal1 Routing Pitch

Via

<table>
<thead>
<tr>
<th>Horizontal Routing</th>
<th>Vertical Routing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metal1</td>
<td>Metal2</td>
</tr>
<tr>
<td>Metal3</td>
<td>Metal4</td>
</tr>
<tr>
<td>Metal5</td>
<td>Metal6</td>
</tr>
</tbody>
</table>
LEF Format – APR Technology: Via Generation

- To connect the wide metal, a via array is generated to reduce the via resistance
- Formulas for generating via arrays are defined

```
Layer Metal1
  Direction HORIZONTAL
  OVERHANG 0.2
Layer Metal2
  Direction VERTICAL
  OVERHANG 0.2
Layer Via1
  RECT -0.14 -0.14 0.14 0.14
  SPACING 0.56 BY 0.56
```

Advanced Reliable Systems (ARES) Lab.
LEF Format – APR Technology: Same Net Spacing

SPACING
SAMENET Metal1 Metal1 0.23;
SAMENET Metal2 Metal2 0.28 STACK;
SAMENET Metal3 Metal3 0.28;
SAMENET VIA12 VIA12 0.26;
SAMENET VIA23 VIA23 0.26;
SAMENET VIA12 VIA23 0.0 STACK;
END SPACING

VIA12 and VIA23 allow stack

0.23

Same Net Spacing Rule

Advanced Reliable Systems (ARES) Lab.
LEF Format – APR Technology: Physical Macros

- Define physical data for
 - Standard cells
 - I/O pads
 - Memories
 - Other hard macros

- Describe abstract shape
 - Size
 - Class
 - Pins
 - Obstructions
MACRO ADD1
CLASS CORE;
FOREIGN ADD1 0.0 0.0;
ORIGEN 0.0 0.0;
LEQ ADD;
SIZE 19.8 BY 6.4;
SYMMETRY x y;
SITE coresite;
PIN A
 DIRECTION INPUT;
 PORT
 LAYER Metal1;
 RECT 19.2 8.2 19.5 10.3;

END
END A
....
END ADD1
LIB Format

- Operating condition
 - Slow, fast, typical

- Pin type
 - Input/output/inout
 - Function
 - Data/clock
 - Capacitance

- Path delay

- Timing constraint
 - Setup, hold, mpwh, mpwl, recovery
Gate-Level Netlist

- If designing a chip, IO PADs, power PADs, and Corner PADs should be added before the netlist is imported.
- Make sure that there is no “assign” statement and no “*cell*” cell name in the netlist.
SDC Constraint

- Clock constraints
- Input delay/ Input drive
- Output delay/ Output load
- False path
- Multi-cycle path
IO Constraint

- **Version:** 1
- **Pad:** CORNER0 NW PCORNERDGZ
- **Pad:** PAD_CLK N
- **Pad:** PAD_HALT N
- **Pad:** CORNER1 NE PCORNERDGZ
- **Pad:** PAD_X1 W
- **Pad:** PAD_X2 W
- **Pad:** CORNER2 SW PCORNERDGZ
- **Pad:** PAD_IOVDD1 S PVDD2DGZ
- **Pad:** PAD_IOVSS1 S PVSS2DGZ
- **Pad:** CORNER3 SE PCORNERDGZ
- **Pad:** PAD_VDD1 E PVDD1DGZ
- **Pad:** PAD_VSS1 E PVSS1DGZ

(*.ioc File)

Advanced Reliable Systems (ARES) Lab.
How To Decide the NO. of Power/Ground PADs

- The following factors are considered:
 - SSO: Simultaneously Switch Outputs
 - SSN: The noise produced by SSO buffers
 - DI: Maximum NO. of copies for one specific kind of IO PAD switching from high to low simultaneously without making ground voltage level higher than 0.8 volt for one ground PAD
 - DF: Driving Factor, \(DF = \frac{1}{DI} \)
 - SDF: Sum of Driving Factor

- Suggestion in SSO case:
 - Required NO. of ground PADs = SDF
 - Required NO. of power PADs = SDF/1.1

Advanced Reliable Systems (ARES) Lab.
If a design has 20 PDB02DGZ (2mA) and 10 PDD16DGZ (16mA). Then,

SDF = 20 \times 0.02 + 10 \times 0.3 = 3.4

In SSO case,
- NO. of VSS PAD = 3.4 \rightarrow 4
- NO. of VDD PAD = 3.4/1.1 = 3.09 \rightarrow 4
Tips to Reduce the Power/Ground Bounce

- Don’t use stronger output buffers than what is necessary
- Use slew-rate controlled outputs
- Place power pad near the middle of the output buffer
- Place noise sensitive I/O pads away from SSO I/Os
- Place VDD and VSS pads next to clock input buffer
Auto Place and Route Using SOC Encounter
CHIP-Level Netlist

If your gate-level netlist is generated by "CORE-level synthesis", you should all the "CHIP-level module" in it.
CHIP-Level Netlist (Cont’)

- If your design has a “Hard Block”, you should add an “empty module” for it
 - The module name should be the same as the “cell name” of the Hard Block

Ex:

```verilog
module memory_0407 (O, clock, cen_in, oen_in, wen_in, A, D);
  input   clock;
  input [7:0] A;
  input [7:0] D;
  input   cen_in;
  input   oen_in;
  input   wen_in;
  output [7:0] O;
endmodule
```

(Module Declaration)

```verilog
wire [7:0] D;
wire [7:0] DI_T;
wire [7:0] A;
wire [7:0] ADDR_T;
wire [7:0] Q2;
wire [7:0] Q1;
RA1SHD256x8 RA1SHD256x8 (.Q(Q1), .CLK(clk), .CEN(CEN1), .CEN(n188), .WEN( WEN), .A(A), .D(D));
memory_0407 memory_0407(.Q(Q2), .clock(clk), .cen_in(CEN2), .oen_in(n188),
wen_in(WEN), .A(A), .D(D));
```

(Module Reference)

Connected Wire Name in Verilog

Pin Name in SPICE

Advanced Reliable Systems (ARES) Lab.
CHIP-Level Timing Constraint

Ex:

```plaintext
# Created by Design Compiler write_sdc on Sun Jul 29 06:04:11 2007

******************************************************************************
set_sdc_version 1.4

create_clock -period 0.34 -waveform {0 4.5} [get_ports {clk}]
set_input_delay 0.34 -clock "clk" [get_ports {ADDR_S[0]}]
set_input_delay 0.34 -clock "clk" [get_ports {ADDR_S[1]}]
set_input_delay 0.34 -clock "clk" [get_ports {ADDR_S[2]}]
set_input_delay 0.34 -clock "clk" [get_ports {ADDR_S[3]}]
set_input_delay 0.34 -clock "clk" [get_ports {ADDR_S[4]}]
set_input_delay 0.34 -clock "clk" [get_ports {ADDR_S[5]}]
set_input_delay 0.34 -clock "clk" [get_ports {ADDR_S[6]}]
set_input_delay 0.34 -clock "clk" [get_ports {ADDR_S[7]}]
set_input_delay 0.34 -clock "clk" [get_ports {DI_S[0]}]
set_input_delay 0.34 -clock "clk" [get_ports {DI_S[1]}]
set_input_delay 0.34 -clock "clk" [get_ports {DI_S[2]}]
set_input_delay 0.34 -clock "clk" [get_ports {DI_S[3]}]
```

CHIP-Level Clock Declaration

Set False Path to Your Test Pins

Set Parameters to the PAD IO

Advanced Reliable Systems (ARES) Lab.
Getting Started

- *linux %> ssh -l “user name” cae18.ee.ncu.edu.tw*
 - Connect to Unix

- *unix %> source /APP/cad/cadence/SOC/CIC/soc.csh*

- *unix %> encounter*

(Do not run in the background mode !!)

Advanced Reliable Systems (ARES) Lab.
Import Design <Design>

- **Design/Design Import**
- Verilog Files: your gate-level netlist
- Tot Cell
- LEF Files (*.lef): including all the LEF files of cell libraries & hard blocks
- LIB Files (*.lib):
 - Max Timing Libraries
 - Min Timing Libraries
 - Common Model Libraries
- IO Assignment File: *ioc

Advanced Reliable Systems (ARES) Lab.
Import Design <Timing>

- Capacitance Table File
- Timing Constraint File: *.sdc
Import Design <Power> <IPO/CTS>

- Power Nets
- Ground Nets
- Footprints for In-Place Layout Optimization (IPO) and Clock Tree Synthesis (CTS)
Import Design <Misc.>

- QX Tech File
- QX Library Directory

(Floorplan View)
Global Net Connection

- Floorplan/Global Net Connections

![Global Net Connection Window]

Advanced Reliable Systems (ARES) Lab.
Specify Floorplan

Floorplan/Specify Floorplan

Advanced Reliable Systems (ARES) Lab.
Specify Scan Chain

- `encounter %> specifyScanChain ScanChainName`
 - `start {ftname | instPinName}`
 - `start {ftname | instPinName}`

- `encounter %> scantrace`

Ex:

```
encounter 2> specifyScanChain scan1 -start PAU_si/C -stop PAU_so/I
encounter 3> specifyScanChain scan2 -start PAD_test_si2/C -stop PAD_test_so2/I
encounter 4> scantrace
```

```
Tracing scan chain: scan1
Successfully traced scan group scan1 (99 elements: 97 scan bits).
Tracing scan chain: scan2
Successfully traced scan group scan2 (57 elements: 56 scan bits).
*** Scan Trace Summary:
Successfully traced scan group scan1 (99 elements: 97 scan bits).
Successfully traced scan group scan2 (57 elements: 56 scan bits).
Successfully traced 2 scan groups (total 156 elements: 153 scan bits).
INFO: Performed sanity check on scan group scan1 (+1 scan edge marked as fixed).
INFO: Passed sanity check on scan group scan2.
*** Scan Sanity Check Summary:
*** 1 scan group passed sanity check.
*** 1 scan group corrected sanity check (total +1 fixed scan edge).
```

Advanced Reliable Systems (ARES) Lab.
Hard Block Placement

- Move/Resize/Reshape floorplan object
Edit Block Halo

- Floorplan/Edit Block Halo
- Reserve space without standard cell placement
Standard Cell Placement

Place/Place

Advanced Reliable Systems (ARES) Lab.
Power Planning – Add Rings

- Floorplan/Custom Power Planning/Add Rings

Advanced Reliable Systems (ARES) Lab.
Power Planning – Add Block Rings

- Floorplan/Custom Power Planning/Add Rings

Advanced Reliable Systems (ARES) Lab.
Example for Power Rings

Advanced Reliable Systems (ARES) Lab.
PAD Pins

Route/SRoute

<table>
<thead>
<tr>
<th>Route</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Block pins</td>
<td>✅</td>
</tr>
<tr>
<td>Pad pins</td>
<td>✅</td>
</tr>
<tr>
<td>Pad rings</td>
<td>✅</td>
</tr>
<tr>
<td>Standard cell pins</td>
<td>✅</td>
</tr>
<tr>
<td>Stripes (unconnected)</td>
<td></td>
</tr>
</tbody>
</table>

Advanced Reliable Systems (ARES) Lab.
Power Planning – Add Stripes

Floorplan/Custom Power Planning/Add Stripes

Advanced Reliable Systems (ARES) Lab.
Ex:

Advanced Reliable Systems (ARES) Lab.
Fix Un-Connected Stripes

Route/SRoute

<table>
<thead>
<tr>
<th>Route</th>
<th>Block pins</th>
<th>Pad pins</th>
<th>Pad rings</th>
<th>Standard cell pins</th>
<th>Stripes (unconnected)</th>
</tr>
</thead>
</table>

![Diagram of un-connected stripes before and after fixing](image)

Advanced Reliable Systems (ARES) Lab.
Flow Clock Tree Synthesize

Create Clock Tree Spec

Specify Clock Tree

Modify

Synthesis Clock Tree

Display Clock Tree

Netlist
Synthesis report
Clock nets
Routing guide

clock spec
Create/Specify/Synthesis Clock Tree Spec.

- **Clock/Create Clock Tree Spec**
 - Create Clock Tree Specification
 - Buffer Footprint: clkbuf
 - Inverter Footprint: clkin
 - Buffer List:
 - Ignore Don’t Use
 - Save Spec To: CHIP.ctstch

- **Clock/Specify Clock Tree**

- **Clock/Synthesis Clock Tree**
 (Clock Spec.)

Advanced Reliable Systems (ARES) Lab.
Example for CTS Report

<table>
<thead>
<tr>
<th>Nr. of Subtrees</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nr. of Sinks</td>
<td>99</td>
</tr>
<tr>
<td>Nr. of Buffer</td>
<td>5</td>
</tr>
<tr>
<td>Nr. of Level (including gates)</td>
<td>1</td>
</tr>
</tbody>
</table>

Max trig. edge delay at sink(L): bist_group/bist/m0/shift_reg_reg_10_CBCN 230.9(ps)
Min trig. edge delay at sink(R): bist_group/memory_0407/clock 176.8(ps)

<table>
<thead>
<tr>
<th>(Actual)</th>
<th>(Required)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rise Phase Delay</td>
<td>176.8~177.5(ps)</td>
</tr>
<tr>
<td>Fall Phase Delay</td>
<td>169.2~230.9(ps)</td>
</tr>
<tr>
<td>Trig. Edge Skew</td>
<td>54.1(ps)</td>
</tr>
<tr>
<td>Rise Skew</td>
<td>40.7(ps)</td>
</tr>
<tr>
<td>Fall Skew</td>
<td>41.7(ps)</td>
</tr>
<tr>
<td>Max. Rise Buffer Tran</td>
<td>50.4(ps)</td>
</tr>
<tr>
<td>Max. Fall Buffer Tran</td>
<td>58.4(ps)</td>
</tr>
<tr>
<td>Max. Rise Sink Tran</td>
<td>177.9(ps)</td>
</tr>
<tr>
<td>Max. Fall Sink Tran</td>
<td>165.4(ps)</td>
</tr>
<tr>
<td>Min. Rise Buffer Tran</td>
<td>23.2(ps)</td>
</tr>
<tr>
<td>Min. Fall Buffer Tran</td>
<td>23.2(ps)</td>
</tr>
<tr>
<td>Min. Rise Sink Tran</td>
<td>97.9(ps)</td>
</tr>
<tr>
<td>Min. Fall Sink Tran</td>
<td>92.4(ps)</td>
</tr>
</tbody>
</table>

****** NO Max Transition Time Violation ******

****** NO Min Transition Time Violation ******

****** NO Max Fanout Violation ******

Advanced Reliable Systems (ARES) Lab.
Display Clock Tree

- Clock/Display/Display Clock Tree

Ex:

Advanced Reliable Systems (ARES) Lab.
Power Analysis

- **Power/Edit Pad Location**
 - ![Image of Power/Edit Pad Location](image1)

- **Power/Edit Net Toggle Probability**
 - ![Image of Power/Edit Net Toggle Probability](image2)

- **Power/Power Analysis/Statistical**
 - ![Image of Power Analysis/Statistical](image3)

Ex:

```
# The Power Analysis Report for VDD net
average power(default): 1.0470e+01 mw
average switching power(default): 2.3212e+00 mw
average internal power(default): 8.1442e+00 mw
average leakage power(default): 4.7800e-03 mw
average user specified power(default): 0.0000e+00 mw

average power by clock domain category:
clock domain1: 1.028e+01 mw
  clock tree power : 4.1149e+00 mw
  non clock tree power : 6.167e+00 mw
unclock domain(0.2): 1.8807e-01 mw

average power by cell category:
core: 7.3761e+00 mw
block: 3.1034e+00 mw
10: 9.7020e-00 mw

average power(considered in rail analysis): 1.0470e+01 mw

worst Ilin drop average analysis: 1.9771e-05 v

number of nodes in rail network: 10645 nodes

worst EM:
  "M1" 5.0000e-02 ma/u
  "M2" 0.0000e+00 ma/u
  "M3" 3.8142e-01 ma/u
  "M4" 3.8142e-01 ma/u
  "M5" 2.647e-01 ma/u
  "V12" 1.4521e-02 ma/cut
  "V23" 1.4521e-02 ma/cut
  "V34" 9.7855e-02 ma/cut
  "V45" 2.8260e-02 ma/cut

biggest toggled net: CLK__L1__NO
do. of terminal: 93

total cap: 7.6044e+02 fF
```

Advanced Reliable Systems (ARES) Lab.
Example for Rail Analysis of IR-Drop & EM

(IR-Drop) (EM)

Advanced Reliable Systems (ARES) Lab.
Power Route

Route/SRoute

- Block pins
- Pad pins
- Pad rings
- Standard cell pins
- Stripes (unconnected)

Advanced Reliable Systems (ARES) Lab.
IO Filler

- encounter %> source addIoFiller.cmd
Nano Route

Route/NanoRoute

Advanced Reliable Systems (ARES) Lab.
Example for Nano Route
Cell Filler

Place/Filler/Add Filler

Ex:

Advanced Reliable Systems (ARES) Lab.
Save Design

- **Design/Save/Netlist** → *.v
- **Timing/Calculate Delay** → *.sdf
- **Design/Save/DEF** → *.def
 - SELECT “Save Scan”
Bounding PAD

- unix %> chmod 755 addbonding.pl
- unix %> /usr/bin/perl addbonding.pl CHIP.def
- encounter %> source bondPads.cmd

Ex:
Save GDSII

- Design/Save/GDS → *.gds