EE6013 VLSI Design

Jin-Fu Li

Advanced Reliable Systems (ARES) Lab.

Department of Electrical Engineering

National Central University

Jhongli, Taiwan

Syllabus

- Contents
 - Introduction to CMOS Circuits
 - MOS Transistor Theory
 - Fabrication of CMOS Integrated Circuits
 - Electrical Characteristics of CMOS Circuits
 - Elements of Physical Design
 - Combinational Circuit Design
 - Sequential Circuit Design
 - Datapath Design
 - Low-Power Design in VLSI Chips
 - Memory Design

Syllabus

- ☐ Text Book
 - N. H. E. Weste and D. Harris, "CMOS VLSI Design, a Circuits and Systems Perspective", Third Edition. Addison Wesley, 2005.
- □ Reference Book
 - S.-M. Kang and Y. Leblebici, "CMOS Digital Integrated Circuits", McGRAW-HILL, 2003.
- □ Grading
 - Homework 30%
 - Midterm 25%
 - Final 25%
 - Project 20%
 - Overdue homework is not accepted!
- Prerequisite
 - Digital logic design, Microelectronics
- □ Key dates
 - Midterm 1: 13:00-15:00, Tuesday, Nov. 13, E1-118
 - Midterm 2: 13:00-15:00, Tuesday, Dec. 25, E1-118
 - Final project presentation: Jan. 8 (E1-118) and 9 (E1-110)
 - Final project report: before 17:00, Jan. 11, E1-402

Syllabus

- □ Teaching assistants
- □ Course Website: http://www.ee.ncu.edu.tw/~jfli/

Lecture Schedule

Date	Note
Week 1 (9/11, 9/12)	
Week 2 (9/18, 9/19)	
Week 3 (9/26)	No class on 9/24
Week 4 (10/2, 10/3)	
Week 5 (10/9)	Hspice Tutorial (Assistants); ATS 2007, Beijin, China
Week 6 (10/16, 10/17)	
Week 7 (10/23, 10/24)	
Week 8 (10/30, 10/31)	
Week 9 (11/6, 11/7)	
Week 10 (11/13, 11/14)	11/13: Midterm1
Week 11 (11/20)	No class on 11/21 (運動會)
Week 12 (11/27, 11/28)	
Week 13 (12/4, 12/5)	
Week 14 (12/11, 12/12)	
Week 15 (12/18, 12/19)	
Week 16 (12/25, 12/26)	12/25: Midterm 2
Week 17 (1/2)	
Week 18 (1/8, 1/9)	Project Presentation

5

What is This Course all About?

- □ Scopes of VLSI design
 - Digital circuits
 - Analog circuits
 - Mixed-signal circuits
 - Memory circuits
- □ This course will cover the following contents
 - CMOS devices and manufacturing technology; CMOS inverters and gates; propagation delay; noise margins; CMOS power dissipation; sequential circuits; arithmetic circuits; interconnect; memories; and low-power design techniques.
- What will you learn?
 - Understanding, designing, and optimizing digital circuits with respect to different quality metrics: area, speed, and power dissipation

ENIAC - The first electronic computer (1946)

The Transistor Revolution

First transistor (Bell Labs, 1948)

The First Integrated Circuits

ECL 3-input Gate (bipolar logic), Motorola 1966

Intel 4004 Microprocessor

1000 transistors,1 MHz operation, 1971

10

Intel Pentium (IV) microprocessor

Moore's Law

In 1965, Gordon Moore noted that the number of transistors on a chip doubled every 18 to 24 months. He made a prediction that semiconductor technology will double its effectiveness every 18 months

Source: J. Rabaey, 2004

Electronics, April 19, 1965.

Evolution in Complexity

Transistor Counts

Moore's law in Microprocessors

Die Size Growth

Frequency

Lead Microprocessors frequency doubles every 2 years

Power Dissipation

Lead Microprocessors power continues to increase

Power Will Be a Major Problem

Power delivery and dissipation will be prohibitive

Power Density

Power density too high to keep junctions at low temp

Not Only Microprocessors

Cell Phone

Digital Cellular Market (Phones Shipped)

1996 1997 1998 1999 2000

Units 48M 86M 162M 260M 435M

(data from Texas Instruments)

Productivity Trends

Complexity outpaces design productivity

Courtesy, ITRS Roadmap

Why Scaling?

- □ Technology shrinks by 0.7/generation
- With every generation can integrate 2x more functions per chip; chip cost does not increase significantly
- \square Cost of a function decreases by 2x
- □ But ...
 - How to design chips with more and more functions?
 - Design engineering population does not double every two years...
- Hence, a need for more efficient design methods
 - Exploit different levels of abstraction

Design Abstraction Levels

Design Metrics

- □ How to evaluate performance of a digital circuit (gate, block, ...)?
 - Cost
 - Reliability
 - Scalability
 - Speed (delay, operating frequency)
 - Power dissipation
 - Energy to perform a function

One New Trend on Complex VLSI Designs

- □ Regular structures with network-connected communication mechanism
 - Multicore processor chips
 - Network-on-chips
- Multicore processor chips can cope with the following challenges in nano-scale technology
 - High power
 - Low reliability
 - Low yield
- □ Network-on-chips can cope with the following challenge in nano-scale technology
 - Long interconnection delay

Itanium (JSSC, Jan. 2006)

SPARC V9 (JSSC, Jan. 2006)

Cell Processor (JSSC, Jan. 2006)

Example of an Network-on-Chip

