Chapter 2 MOS Transistor Theory

Jin-Fu Li

Advanced Reliable Systems (ARES) Lab. Department of Electrical Engineering National Central University Jhongli, Taiwan

Outline

- □ Introduction
- I-V Characteristics of MOS Transistors
- Nonideal I-V Effects
- Pass Transistor
- □ Summary

MOS Transistor

- MOS transistors conduct electrical current by using an applied voltage to move charge from the *source* side to the *drain* side of the device
- □ An MOS transistor is a *majority-carrier* device
- In an *n-type* MOS transistor, the majority carriers are *electrons*
- In a *p*-type MOS transistor, the majority carriers are holes

Threshold voltage

- It is defined as the voltage at which an MOS device begins to conduct ("turn on")
- MOS transistor symbols

MOS Transistor

- □ So far, we have treated transistors as ideal switches
- □ An ON transistor passes a finite amount of current
 - Depends on terminal voltages
 - Derive current-voltage (I-V) relationships
- □ Transistor gate, source, drain all have capacitance
 - I = $C (\Delta V / \Delta t) \rightarrow \Delta t = (C/I) \Delta V$
 - Capacitance and current determine speed
- □ The structure of a MOS transistor is symmetric
 - Terminals of source and drain of a MOS can be exchanged

V_a & Channel for P-Type Body

NMOS Transistor in Cutoff Mode

- > Cutoff region
 - \checkmark The source and drain have free electrons
 - \checkmark The body has free holes but no free electrons
 - \checkmark The junction between the body and the source or

drain are reverse-biased, so almost zero current flows

NMOS Transistor in Linear Mode

> Linear region

 \checkmark A.k.a. resistive, nonsaturated, or unsaturated region

✓ If $V_{gd}=V_{gs}$, then $V_{ds}=V_{gd}-V_{gs}=0$ and there is no electrical field tending to push current from drain to source

✓ If V_{gs} > V_{gd} > V_{t} , then 0< V_{ds} < V_{gs} - V_{t} and there is a small positive potential V_{ds} is applied to the drain , current I_{ds} flows through the channel from drain to source

 \checkmark The current increases with both the drain and gate voltage

NMOS Transistor in Saturation Mode

Saturation region

 \checkmark The V_{ds} becomes sufficiently large that V_{gd} < V_{t}, the channel is no longer inverted near the drain and becomes pinched off

 \checkmark However, conduction is still brought about by the drift of electrons under the influence of the positive drain voltage

 \checkmark As electrons reach the end of the channel, they are injected into the depletion region near the drain and accelerated toward the drain

 \checkmark The current \mathbf{I}_{ds} is controlled by the gate voltage and ceases to be influenced by the drain

NMOS Transistor

In summary, the NMOS transistor has three modes of operations

- If V_{gs} V_t, the transistor is cutoff and no current flows
- If V_{gs}>V_t and V_{ds} is small, the transistor acts as a linear resistor in which the current flow is proportional to V_{ds}
- If V_{gs}>V_t and V_{ds} is large, the transistor acts as a current source in which the current flow becomes independent of V_{ds}
- The PMOS transistor operates in just the opposite fashion

I-V Characteristics of MOS

- □ In linear and saturation regions, the gate attracts carriers to form a channel
- The carriers drift from source to drain at a rate proportional to the electric field between these regions
- MOS structure looks like parallel plate capacitor while operating in inversion

Channel Charge

 $> Q_{channel} = C_g(V_{gc} - V_t)$, where Cg is the capacitance of the gate to the channel and $V_{gc}V_t$ is the amount of voltage attracting charge to the channel beyond the minimal required to invert from p to n

$$> V_c = (V_s + V_d)/2 = V_s + V_{ds}/2$$

$$> \text{Therefore, } V_{gc} = (V_{gs} + V_{gd})/2 = V_{gs} - V_{ds}/2$$

Advanced Reliable Systems (ARES) Lab.

Gate Capacitance (C_a)

Transistor dimensions

The gate capacitance is $C_g = \varepsilon_{ox} \frac{WL}{t_{ox}}$

Carrier Velocity

Charge is carried by e-

- Carrier velocity v proportional to lateral Efield between source and drain
- $\Box v = \mu E$, where μ is called mobility

$$\Box E = V_{ds}/L$$

□ Time for carrier to cross channel:

NMOS Linear I-V

□Now we know

How much charge Q_{channel} is in the channel
 How much time *t* each carrier takes to cross

$$\Box I_{ds} = \frac{Q_{\text{channel}}}{t}$$
$$= \mu C_{\text{ox}} \frac{W}{L} \left(V_{gs} - V_t - \frac{V_{ds}}{2} \right) V_{ds}$$
$$= \beta \left(V_{gs} - V_t - \frac{V_{ds}}{2} \right) V_{ds}$$

• Where
$$\beta = \mu C_{ox} \frac{W}{L}$$

NMOS Saturation I-V

□ If $V_{gd} < V_t$, channel pinches off near drain ■ When $V_{ds} > V_{dsat} = V_{gs} - V_t$ □ Now drain voltage no longer increases current □ $I_{ds} = \beta \left(V_{gs} - V_t - \frac{V_{dsat}}{2} \right) V_{dsat}$ $= \frac{\beta}{2} \left(V_{gs} - V_t \right)^2$

Summary of NMOS I-V Characteristics

$$I_{ds} = \begin{cases} 0 & V_{gs} < V_t & \text{cutoff} \\ \beta \left(V_{gs} - V_t - \frac{V_{ds}}{2} \right) V_{ds} & V_{ds} < V_{dsat} & \text{linear} \\ \frac{\beta}{2} \left(V_{gs} - V_t \right)^2 & V_{ds} > V_{dsat} & \text{saturation} \end{cases}$$

_

Example

Assume that the parameters of a technology are as follows

$$\beta = \mu C_{ox} \frac{W}{L} = (350) \left(\frac{3.9 \cdot 8.85 \cdot 10^{-14}}{100 \cdot 10^{-8}} \right) \left(\frac{W}{L} \right) = 120 \frac{W}{L} \mu A / V^2$$

Nonideal I-V Effects

- Nonideal I-V effects
 - Velocity saturation, mobility degradation, channel length modulation, subthreshold conduction, body effect, etc.
- \square The saturation current increases less than quadratically with increasing V_{qs}. This is caused by two effects:
 - Velocity saturation
 - Mobility degradation
- Velocity saturation
 - At high lateral field strengths (V_{ds}/L), carrier velocity ceases to increase linearly with field strength
 - **Result** in lower I_{ds} than expected at high V_{ds}
- Mobility degradation
 - At high vertical field strengths (V_{gs}/t_{ox}), the carriers scatter more often
 - Also lead to less current than expected at high V_{gs}

Channel Length Modulation

Ideally, I_{ds} is independent of V_{ds} for a transistor in saturation, making the transistor a perfect current source

$$I_{ds} = \frac{1}{2} \mu \frac{W}{L} C_{ox} (V_{gs} - V_t)^2$$

- □ Actually, the width L_d of the depletion region between the channel and drain is increased with V_{db} . To avoid introducing the body voltage into our calculations, assume the source voltage is close to the body voltage so V_{db} ~ V_{ds}
 - Thus the effective channel length is shorten to L_{eff} =L-L_d
 - Therefore, the Ids can be expressed as

$$I_{ds} = \frac{1}{2} \mu \frac{W}{L_{eff}} C_{ox} (V_{gs} - V_t)^2 = \frac{1}{2} \mu \frac{W}{L} C_{ox} (V_{gs} - V_t)^2 \frac{1}{1 - \frac{L_d}{L}}$$

Assume that $\frac{L_d}{L} << 1$, **then**

$$I_{ds} = \frac{1}{2} \mu \frac{W}{L} C_{ox} (V_{gs} - V_t)^2 (1 + \frac{\Delta L}{L}) = \frac{1}{2} \mu \frac{W}{L} C_{ox} (V_{gs} - V_t)^2 (1 + \lambda V_{ds})$$

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU

Channel Length Modulation

- \square The parameter $\lambda\,$ is an empirical channel length modulation factor
- As channel length gets shorter, the effect of the channel length modulation becomes relatively more important

Hence λ is inversely dependent on channel length

- This channel length modulation model is a gross oversimplification of nonlinear behavior and is more useful for conceptual understanding than for accurate device modeling
- Channel length modulation is very important to analog designers because it reduces the gain of amplifiers. It is generally unimportant for qualitatively understanding the behavior of digital circuits

Body Effect

□ Body effect

V_t is a function of voltage between source and substrate

Advanced Reliable Systems (ARES) Lab.

Jin-Fu Li, EE, NCU

Mobility Variation

\square Mobility μ

- It describes the ease with which carriers drift in the substrate material
- It is defined by

 $\Box \mu$ =(average carrier drift velocity, ν)/(electrical field, E)

- Mobility varies according to the type of charge carrier
 - Electrons have a higher mobility than holes
 - Thus NMOS has higher current-producing capability than the corresponding PMOS
- Mobility decreases with increasing dopingconcentration and increasing temperature

Drain Punchthrough & Hot Electrons

Drain punchthrough

- When the drain voltage is high enough, the depletion region around the drain may extend to source. Thus, causing current to flow irrespective of the gate voltage
- Hot electrons
 - When the source-drain electric field is too large, the electron speed will be high enough to break the electron-hole pair. Moreover, the electrons will penetrate the gate oxide, causing a gate current

Subthreshold Conduction

Subthreshold region

- The cutoff region is also referred to as the subthreshold region, where I_{ds} increases exponentially with V_{ds} and V_{qs}
- Observe in the following figure that at $V_{gs} < V_t$, the current drops off exponentially rather than abruptly becoming zero

Junction Leakage

- The p-n junctions between diffusion and the substrate or well form diodes
- The p-type and n-type substrates are tied to GND or V_{dd} to ensure these diodes remain reverse-biased
- However, reverse-biased diodes still conduct a small amount of current IL

$$I_L = I_S \left(e^{\frac{b}{v_T}} - 1 \right)$$

In modern transistors with low threshold voltages, subthreshold conduction far exceeds junction leakage

Temperature Dependence

- The magnitude of the threshold voltage decreases nearly linearly with temperature
- □ Carrier mobility decreases with temperature
- Junction leakage increases with temperature because I_s is strongly temperature dependent
- $\hfill \hfill \hfill$

Geometry Dependence

- $\hfill \Box$ The layout designer draws transistors with width and length W_{draw} and L_{draw} . The actual gate dimensions may differ by some factors X_W and X_L
 - E.g., the manufacturer may create masks with narrower polysilicon or may overetch the polysilicon to provide shorter channels (negative X_L)
- □ Moreover, the source and drain tend to diffuse laterally under the gate by L_D , producing a shorter effective channel length that the carriers must traverse between source and drain. Similarly, diffusion of the bulk by W_D decreases the effective channel width
- Therefore, the actually effective channel length and width can be expressed as

$$L_{eff} = L_{draw} + X_L - 2L_D$$

 $W_{eff} = W_{draw} + X_W - 2W_D$

MOS Small Signal Model

Linear region

Saturation region

$$I_{ds} = \mu \frac{W}{L} C_{ox} [(V_{gs} - V_{t})V_{ds} - \frac{1}{2}V_{ds}^{2}] \qquad I_{ds} = \frac{1}{2} \mu \frac{W}{L} C_{ox} (V_{gs} - V_{t})^{2}$$

$$g_{ds} = \frac{dI_{ds}}{dV_{ds}} = \mu \frac{W}{L} C_{ox} [(V_{gs} - V_{t}) - V_{ds}] \qquad g_{ds} = 0$$

$$g_{m} = \frac{dI_{ds}}{dV_{gs}} | (V_{ds} = const.) = \mu \frac{W}{L} C_{ox} V_{ds} \qquad g_{m} = \mu \frac{W}{L} C_{ox} (V_{gs} - V_{t})$$

Advanced Reliable Systems (ARES) Lab.

Jin-Fu Li, EE, NCU

Pass Transistor

NMOS pass transistor

- C_{load} is initially discharged, i.e., V_{out}=V_{ss}
- If V_{in}=V_{dd} and V_S=V_{dd}, the V_{out}=V_{dd}-V_{tn}
- If $V_{in}=V_{ss}$ and $V_{S}=V_{dd}$, the $V_{out}=V_{ss}$

PMOS pass transistor

If
$$V_{in}=V_{ss}$$
 and $V_{-S}=V_{ss}$, the $V_{out}=V_{tp}$

Jin-Fu Li, EE, NCU

Pass Transistor Circuits

Transmission Gate

- By combining behavior of the NMOS and PMOS, we can construct a transmission gate
 - The transmission gate can transmit both logic one and logic zero without degradation

- The transmission gate is a fundamental and ubiquitous component in MOS logic
 - A multiplexer element
 - A logic structure,
 - A latch element, etc.

Voltage-Controlled Resistor

- Consider the case where the control input changes rapidly, the V_{in} is V_{dd} , and the capacitor on the transmission gate output is discharged (V_{ss})
 - The transmission gate acts as a resistor

Summary

Threshold drops

- Pass transistors suffer a threshold drop when passing the wrong value: NMOS transistors only pull up to V_{DD}-V_{tn}, while PMOS transistors only pull down to |V_{tp}|
- The magnitude of the threshold drop is increased by the body effect
- Fully complementary transmission gates should be used where both 0's and 1's must be passed well
- \Box V_{DD}
 - Velocity saturation and mobility degradation result in less current than expected at high voltage
 - This means that there is no point in trying to use a high V_{DD} to achieve high fast transistors, so V_{DD} has been decreasing with process generation to reduce power consumption
 - Moreover, the very short channels and thin gate oxide would be damaged by high V_{DD}

Summary

Leakage current

- Real gates draw some leakage current
- The most important source at this time is subthreshold leakage between source and drain of a transistor that should be cut off
- The subthreshold current of a OFF transistor decreases by an order of magnitude for every 60-100mV that V_{gs} is below V_t. Threshold voltages have been decreasing, so subthreshold leakage has been increasing dramatically
- Some processes offer multiple choices of V_t; low-V_t devices are used for high performance, while high-V_t devices are used for low leakage elsewhere
- Leakage current causes CMOS gates to consume power when idle. It also limits the amount of time that data is retained in dynamic logic, latches, and memory cells
- In modern processes, dynamic logic and latches require some sort of feedback to prevent data loss from leakage
- Leakage increases at high temperature