Chapter 4 Electrical Characteristics of CMOS

Jin-Fu Li

Department of Electrical Engineering National Central University Jungli, Taiwan

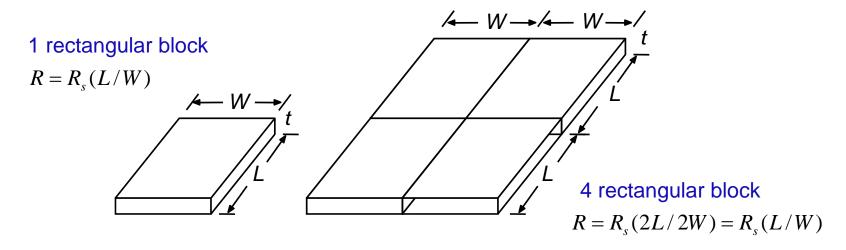
Outline

- Resistance & Capacitance Estimation
- □ DC Response
- Logic Level and Noise Margins
- □ Transient Response
- Delay Estimation
- Transistor Sizing
- Power Analysis
- □ Scaling Theory

Resistance Estimation

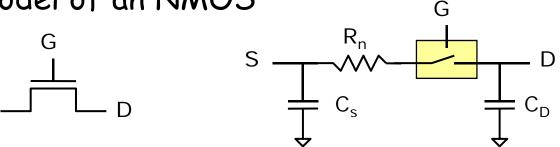
Resistance

- $R = (\rho/t)(L/W) \text{, where } (\rho, t, L, W) \text{ is (resistivity, thickness, conductor length, conductor width)}$
- Sheet resistance
 - $\blacksquare R_s = \Omega / \square$
 - Thus $R = R_s(L/W)$

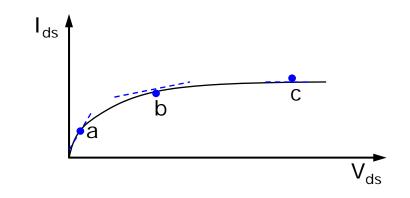


Drain-Source MOS Resistance

- A simplified linear model of MOS is useful at the logic level design
 - RC model of an NMOS



The drain-source resistance at any point on the current curve as shown below



Drain-Source Resistance

$\hfill\square$ The resistance at point a

- The current is approximated by $\Box I_{ds} \approx \beta_n (V_{gs} - V_t) V_{ds}$
- Thus the resistance is

 $\square \quad R_n \approx 1/\beta_n (V_{gs} - V_t)$

$\hfill\square$ The resistance at point \hfilb

Drain-Source Resistance

$\hfill\square$ The resistance at point ${\bf c}$

- The current is $\Box I_{ds} \approx \frac{1}{2}\beta_n (V_{gs} - V_t)^2$
- Thus the resistance is

$$\square \quad R_n = 2V_{ds} / \beta_n (V_{gs} - V_t)^2$$

- $\blacksquare R_n \text{ is a function of both } V_{gs} \text{ and } V_{ds}$
- \Box These equations show that it is not possible to define a constant value for R_n
- □ However, R_n is inversely proportion to β_n in all cases, i.e.,
 - $\blacksquare R_n \propto 1/\beta_n$

 $\beta_n = k(W/L) , W/L is called$ *aspect ratio*

Capacitance Estimation

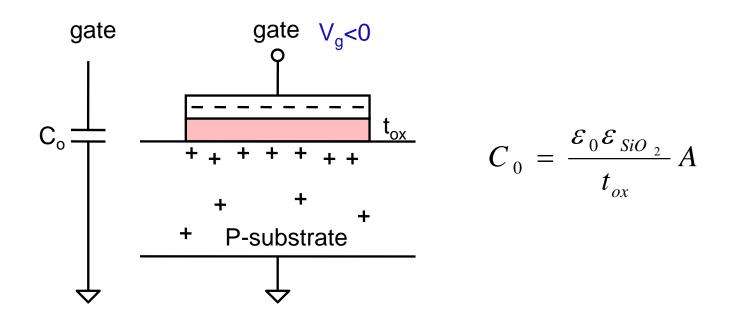
- The switching speed of MOS circuits are heavily affected by the parasitic capacitances associated with the MOS device and interconnection capacitances
- The total load capacitance on the output of a CMOS gate is the sum of
 - Gate capacitance
 - Diffusion capacitance
 - Routing capacitance
- Understanding the source of parasitic loads and their variations is essential in the design process

- The capacitance of an MOS is varied with the applied voltages
- Capacitance can be calculated by

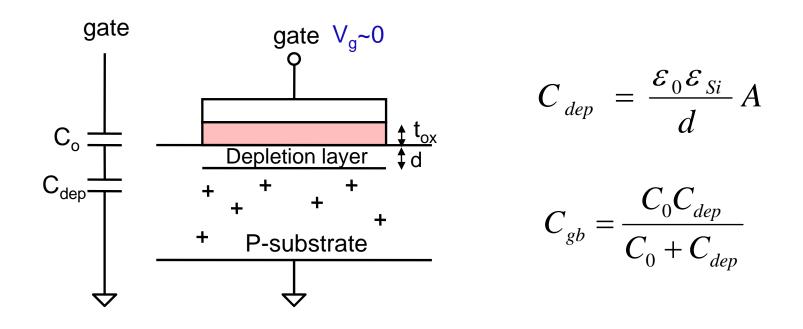
$$C = \frac{\varepsilon_0 \varepsilon_x}{d} A$$

- $\mathbf{\varepsilon}_x$ is dielectric constant
- \mathbf{z}_0 is permittivity of free space
- Depend on the gate voltage, the state of the MOS surface may be in
 - Accumulation
 - Depletion
 - Inversion

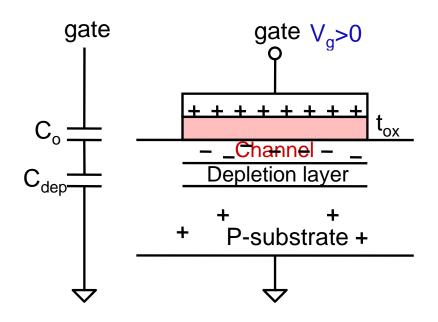
- \Box When V_q<0, an *accumulation* layer is formed
 - The negative charge on the gate attracts holes toward the silicon surface
 - The MOS structure behaves like a parallel-plate capacitor



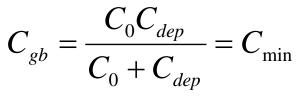
- When a small positive voltage is applied to the gate, a depletion layer is formed
 - The positive gate voltage repels holes, leaving a negatively charged region depleted of carriers



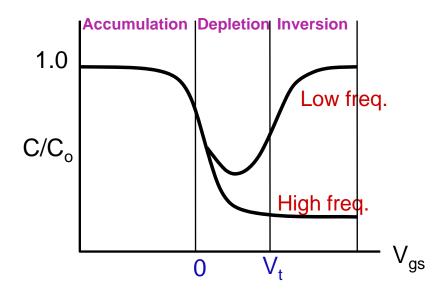
- □ When the gate voltage is further increased, an n-type channel (inversion layer) is created
 - If the MOS is operated at high frequency, the surface charge is not able to track fast moving gate voltages



Low frequency $C_{gb} = C_0$



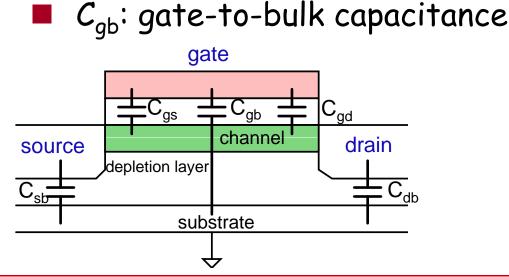
Consequently, the dynamic gate capacitance as a function of gate voltage, as shown below

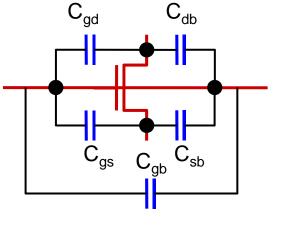


The minimum capacitance depends on the depth of the depletion region, which depends on the substrate doping density

MOS Device Capacitances

- The parasitic capacitances of an MOS transistor are shown as below
 - C_{gs}, C_{gd}: gate-to-channel capacitances, which are lumped at the source and the drain regions of the channel, respectively
 - C_{sb}, C_{db}: source and drain-diffusion capacitances to bulk





Variation of Gate Capacitance

- The behavior of the gate capacitance in the three regions of operation is summarized as below
 - Off region $(V_{gs} < V_{t})$: $C_{gs} = C_{gd} = 0$; $C_{g} = C_{gb}$
 - Non-saturated region $(V_{gs}-V_t+V_{ds})$: C_{gs} and C_{gd} become significant. These capacitances are dependent on gate voltage. Their value can be estimated as

$$C_{gd} = C_{gs} = \frac{1}{2} \frac{\varepsilon_0 \varepsilon_{SiO_2}}{t_{ox}} A$$

Saturated region ($V_{gs}-V_t < V_{ds}$): The drain region is pinched off, causing C_{gd} to be zero. C_{gs} increases to approximately $C_{gs} = \frac{2}{3} \frac{\mathcal{E}_o \mathcal{E}_{SiO_2}}{t_{ox}} A$

Approximation of the C_g

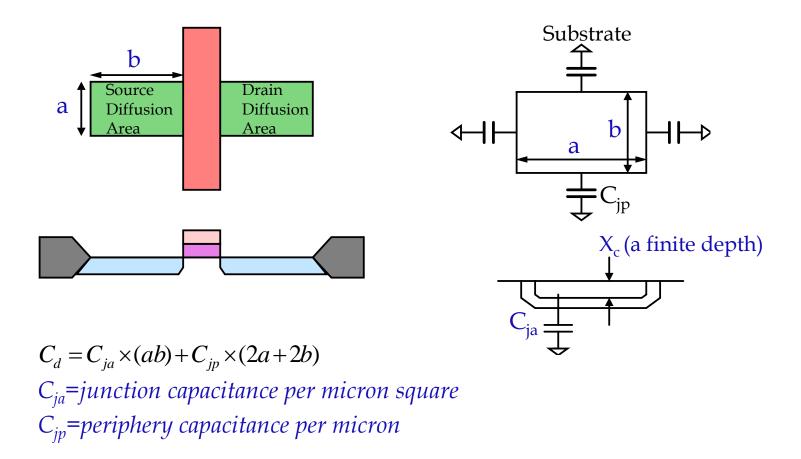
 \Box The C_q can be further approximated with $C_g = C_{ox}A$, where $C_{ox} = \frac{\varepsilon_o \varepsilon_{SiO_2}}{1}$ \Box The gate capacitance is determined by the gate area, since the thickness of oxide is associated with process of fabrication □ For example, assume that the thickness of silicon oxide of the given process is $150 \times 10^8 \mu m$. Calculate the capacitance of the MOS shown below $\lambda = 0.5 \,\mu m$ 4λ **←** 5λ

 $C_g = \frac{3.9 \times 8.854 \times 10^{-14}}{150 \times 10^{-8}} \times 2 = 25.5 \times 2 \times 10^{-4} \, pF \approx 0.005 \, pF$

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU

Diffusion Capacitance

 \square Diffusion capacitance $C_{\rm d}$ is proportional to the diffusion-to-substrate junction area



Junction Capacitance

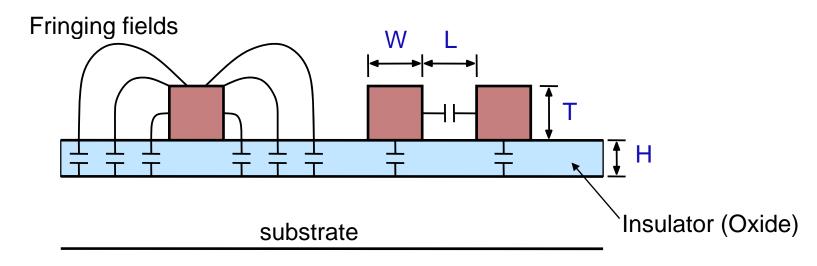
- Semiconductor physics reveals that a PN junction automatically exhibits capacitance due to the opposite polarity charges involved. This is called junction or depletion capacitance and is found at every drain or source region of a MOS
- The junction capacitance is varies with the junction voltage, it can be estimate as

$$C_{j} = C_{j0} (1 - \frac{V_{j}}{V_{b}})^{-m}$$

- \square C_j=junction voltage (negative for reverse bias)
- \Box C_{j0} = zero bias junction capacitance ($V_j = 0$)
 - V_b =built-in junction voltage ~ 0.6V

Single Wire Capacitance

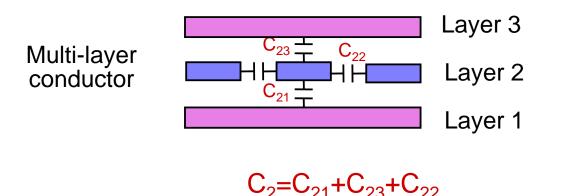
Routing capacitance between metal and substrate can be approximated using a parallel-plate model



In addition, a conductor can exhibit capacitance to an adjacent conductor on the same layer

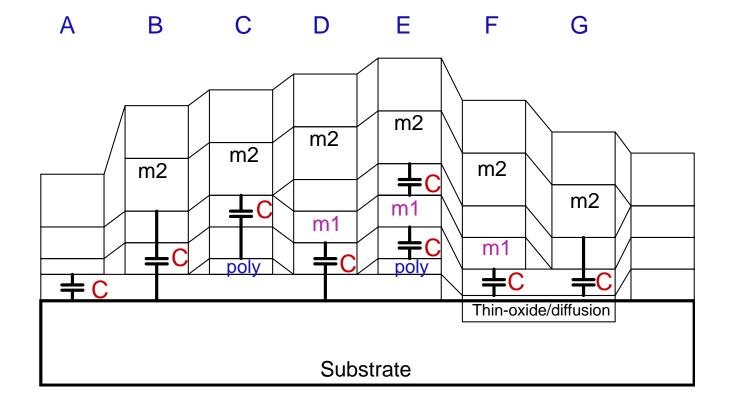
Multiple Conductor Capacitances

- Modern CMOS processes have multiple routing layers
 - The capacitance interactions between layers can become quite complex
- Multilevel-layer capacitance can be modeled as below



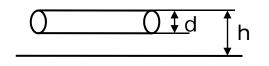
A Process Cross Section

Interlayer capacitances of a two-level-metal process

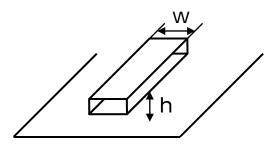


Inductor

For bond wire inductance $L = \frac{\mu}{2\pi} \ln(\frac{4h}{d})$



For on-chip metal wires $L = \frac{\mu}{2\pi} \ln(\frac{8h}{w} + \frac{w}{4h})$

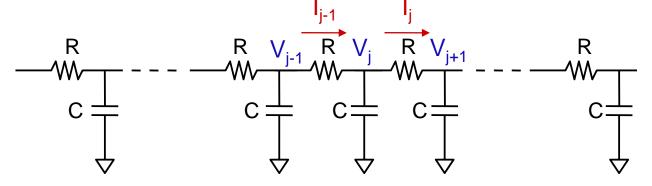


The inductance produces Ldi/dt noise especially for ground bouncing noise. Note that when CMOS circuit are clocked, the current flow changes greatly

$$V = L \frac{di}{dt}$$

Distributed RC Effects

- The propagation delay of a signal along a wire mainly depends on the distributed resistance and capacitance of the wire
- A long wire can be represented in terms of several RC sessions, as shown below



The response at node V_j with respect to time is then given by

$$\Box \quad CdV = Idt \Longrightarrow C \frac{dV_j}{dt} = (I_{j-1} - I_j) = \frac{(V_{j-1} - V_j)}{R} - \frac{(V_j - V_{j+1})}{R}$$

Distributed RC Effects

As the number of sections in the network becomes large (and the sections become small), the above expression reduces to the differential form

$$rc \frac{dV}{dt} = \frac{d^2V}{dx^2} \Longrightarrow t_x = kx^2$$

- r : resistance per unit length
 - C : capacitance per unit length
- □ Alternatively, a discrete analysis of the circuit shown in the previous page yields an approximate signal delay of RCn(n+1)

$$t_n = 0.7 \times \frac{RCn(n+1)}{2}$$
, where n=number of sections
$$t_1 = 0.7 \frac{rcl^2}{2}$$

Wire Segmentation with Buffers

- To optimize speed of a long wire, one effective method is to segment the wire into several sections and insert buffers within these sections
- Consider a poly bus of length 2mm that has been divided into two 1mm sections.

Assume that
$$t_x = 4 \times 10^{-15} x^2$$

- With buffer $t_p = 4 \times 10^{-15} \times 1000^2 + t_{buf} + 4 \times 10^{-15} \times 1000^2$ = $4ns + t_{buf} + 4ns = 8ns + t_{buf}$
- Without buffer $t_p = 4 \times 10^{-15} \times 2000^2 = 16ns$
- By keeping the buffer delay small, significant gain can be obtained with buffer insertion

Crosstalk

- A capacitor does not like to change its voltage instantaneously.
- □ A wire has high capacitance to its neighbor.
 - When the neighbor switches from 1-> 0 or 0->1, the wire tends to switch too.
 - Called capacitive *coupling* or *crosstalk*.
- Crosstalk effects
 - Noise on nonswitching wires
 - Increased delay on switching wires

Crosstalk Delay

Assume layers above and below on average are quiet

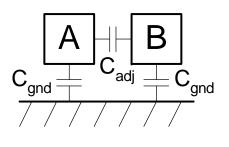
Second terminal of capacitor can be ignored

• Model as
$$C_{gnd} = C_{top} + C_{bot}$$

 \square Effective $C_{\rm adj}$ depends on behavior of neighbors

Miller effect

В	$\Delta \mathbf{V}$	C _{eff(A)}	MCF
Constant	V _{DD}	$C_{gnd} + C_{adj}$	1
Switching with A	0	C _{end}	0
Switching opposite A	$2V_{DD}$	C _{gnd} + 2 C _{adj}	2

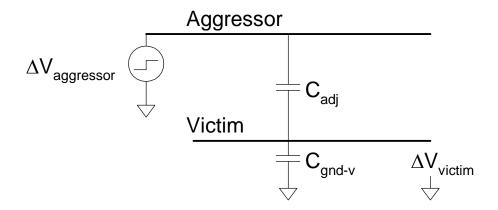


Crosstalk Noise

Crosstalk causes noise on nonswitching wires

- □ If victim is floating:
 - model as capacitive voltage divider

$$\Delta V_{victim} = \frac{C_{adj}}{C_{gnd-v} + C_{adj}} \Delta V_{aggressor}$$

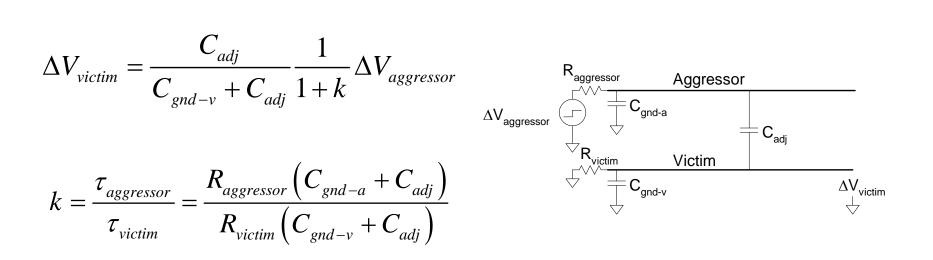


Driven Victim

Usually victim is driven by a gate that fights noise

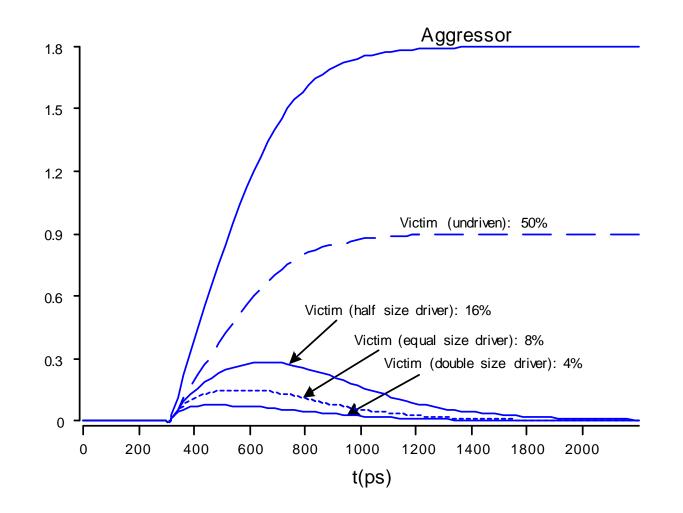
Noise depends on relative resistances

- Victim driver is in linear region, agg. in saturation
- If sizes are same, R_{aggressor} = 2-4 x R_{victim}



Simulation Waveforms

 \Box Simulated coupling for $C_{adj} = C_{victim}$



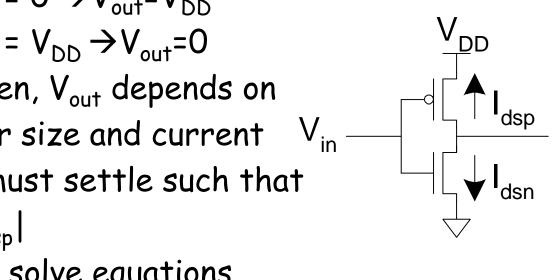
DC Response

 \Box DC Response: V_{out} vs. V_{in} for a gate

□ Ex: Inverter

- When $V_{in} = 0 \rightarrow V_{out} = V_{DD}$
- When $V_{in} = V_{DD} \rightarrow V_{out} = 0$
- In between, V_{out} depends on transistor size and current V_{in}
- By KCL, must settle such that $I_{dsn} = |I_{dsp}|$

But graphical solution gives more insight

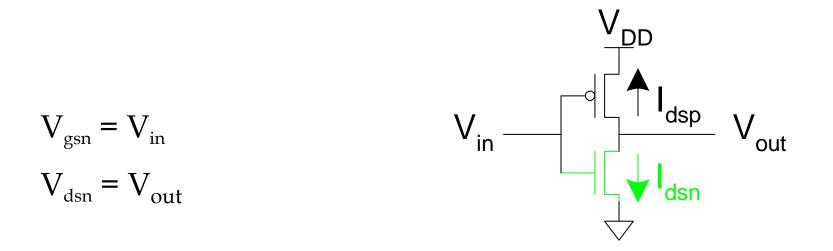


Transistor Operation

- Current depends on region of transistor behavior
- $\hfill \label{eq:star}$ For what V_{in} and V_{out} are NMOS and PMOS in
 - Cutoff?
 - Linear?
 - Saturation?

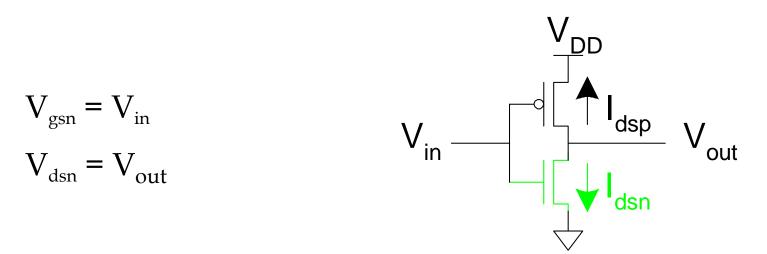
NMOS Operation

Cutoff	Linear	Saturated
$V_{gsn} < V_{tn}$	$V_{gsn} > V_{tn}$	$V_{gsn} > V_{tn}$
	$V_{dsn} < V_{gsn} - V_{tn}$	$V_{dsn} > V_{gsn} - V_{tn}$



NMOS Operation

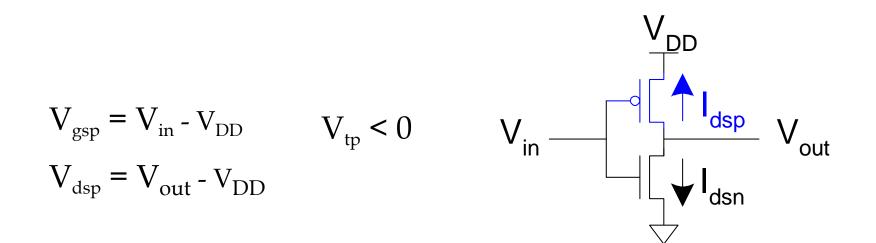
Cutoff	Linear	Saturated
$V_{gsn} < V_{tn}$	$V_{gsn} > V_{tn}$	$V_{gsn} > V_{tn}$
$V_{in} < V_{tn}$	$V_{in} > V_{tn}$	$V_{in} > V_{tn}$
	$V_{dsn} \leq V_{gsn} - V_{tn}$	$V_{dsn} > V_{gsn} - V_{tn}$
	$V_{out} \leq V_{in} - V_{tn}$	$V_{out} > V_{in} - V_{tn}$



Jin-Fu Li, EE, NCU

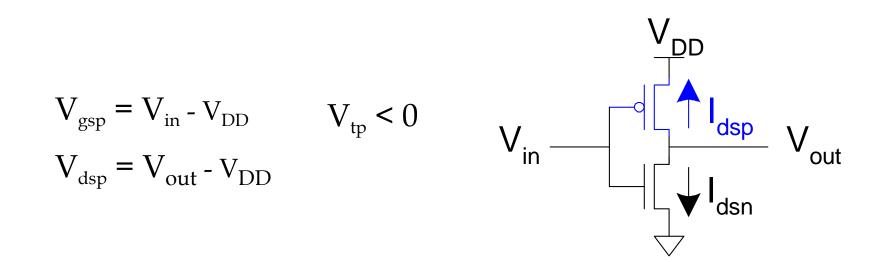
PMOS Operation

Cutoff	Linear	Saturated
$V_{gsp} > V_{tp}$	$V_{gsp} < V_{tp}$	$V_{gsp} < V_{tp}$
	$V_{dsp} > V_{gsp} - V_{tp}$	$V_{dsp} < V_{gsp} - V_{tp}$

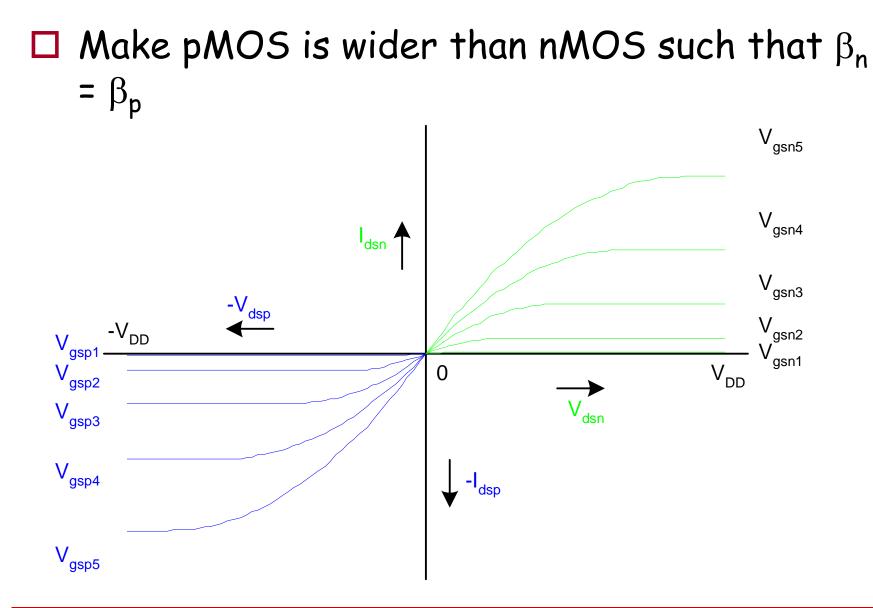


PMOS Operation

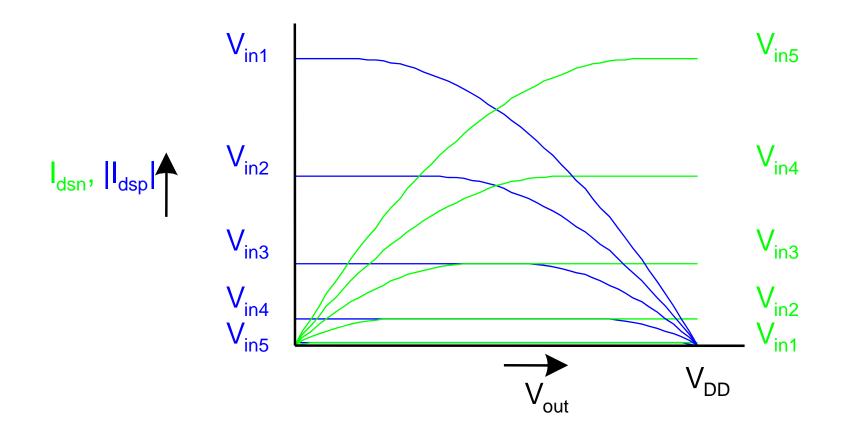
Cutoff	Linear	Saturated
$V_{gsp} > V_{tp}$	$V_{gsp} < V_{tp}$	$V_{gsp} < V_{tp}$
$V_{in} > V_{DD} + V_{tp}$	$V_{in} < V_{DD} + V_{tp}$	$V_{in} < V_{DD} + V_{tp}$
	$V_{dsp} > V_{gsp} - V_{tp}$	$V_{dsp} \le V_{gsp} - V_{tp}$
	$V_{out} > V_{in} - V_{tp}$	$V_{out} < V_{in} - V_{tp}$



I-V Characteristics



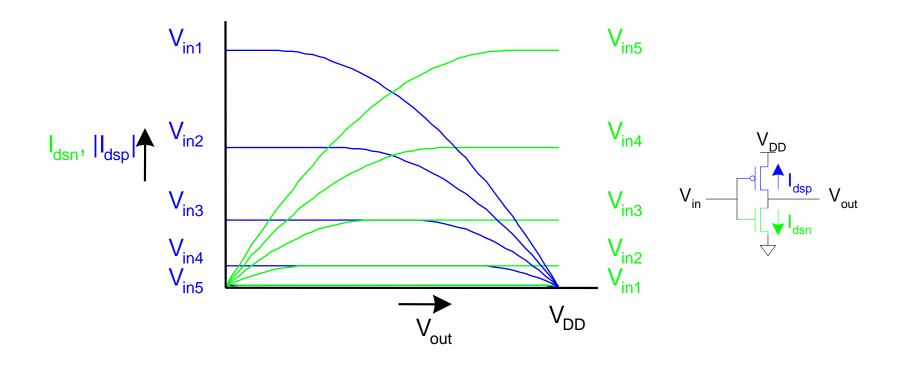
Current & V_{out}, V_{in}



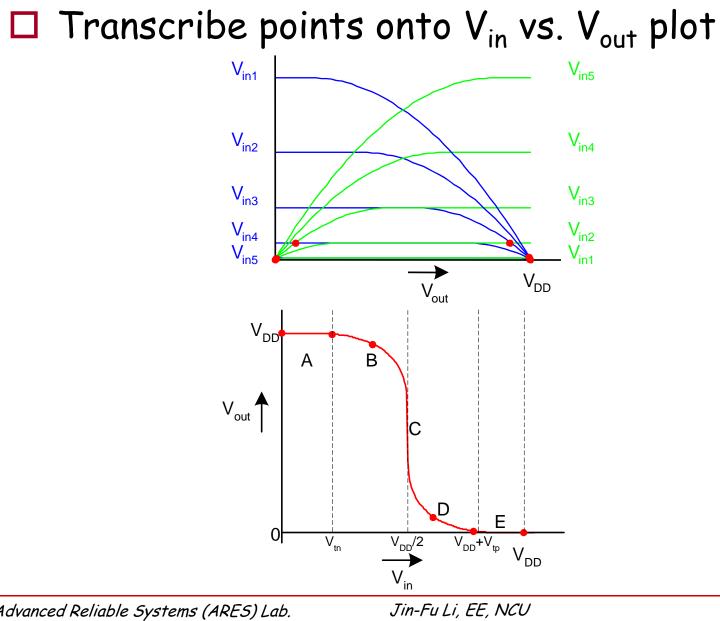
Load Line Analysis

\Box For a given V_{in} :

- Plot I_{dsn} , I_{dsp} vs. V_{out}
- V_{out} must be where |currents| are equal in



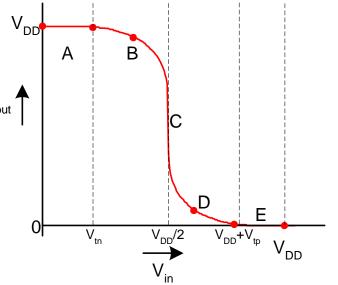
DC Transfer Curve



Operation Regions

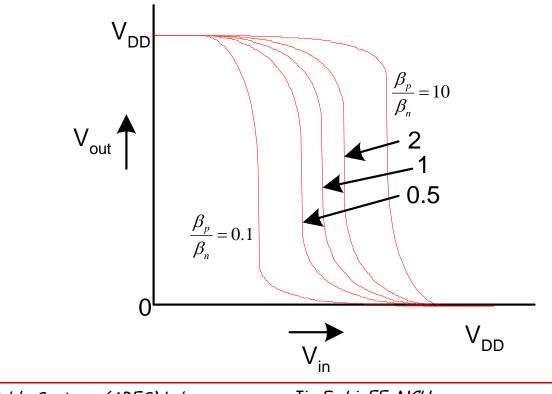
Revisit transistor operating regions

Region	nMOS	pMOS	V _{DD}	•
А	Cutoff	Linear		А
В	Saturation	Linear	V _{out} ♠	
С	Saturation	Saturation		
D	Linear	Saturation		
Е	Linear	Cutoff	0	



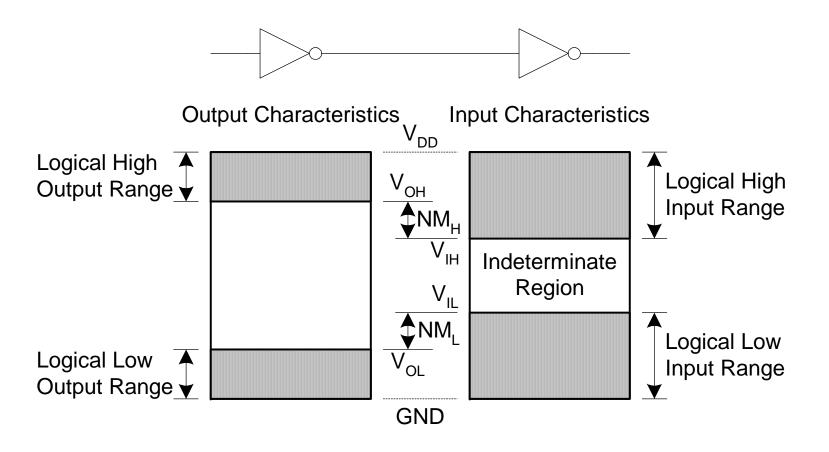
Beta Ratio

- $\hfill \mbox{ If } \beta_p \/ \beta_n \neq 1,$ switching point will move from $V_{DD}/2$
- □ Called *skewed* gate
- Other gates: collapse into equivalent inverter



Noise Margin

How much noise can a gate input see before it does not recognize the input?

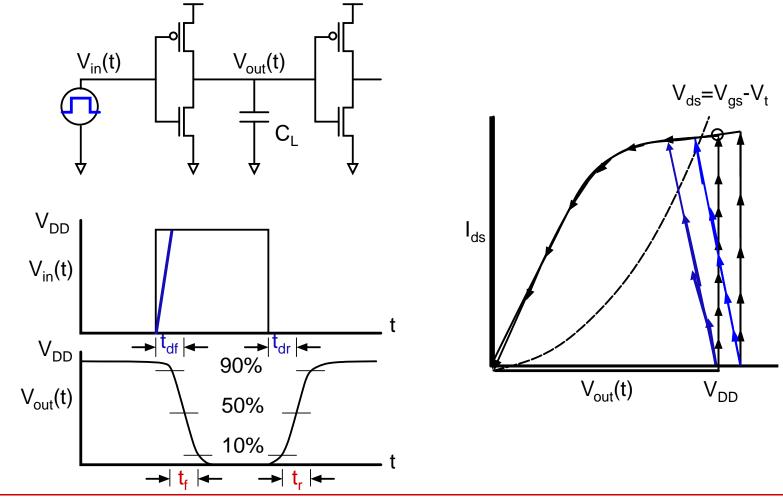


Transient Analysis

DC analysis tells us V_{out} if V_{in} is constant
 Transient analysis tells us V_{out}(t) if V_{in}(t) changes

Switching Characteristics

Switching characteristics for CMOS inverter

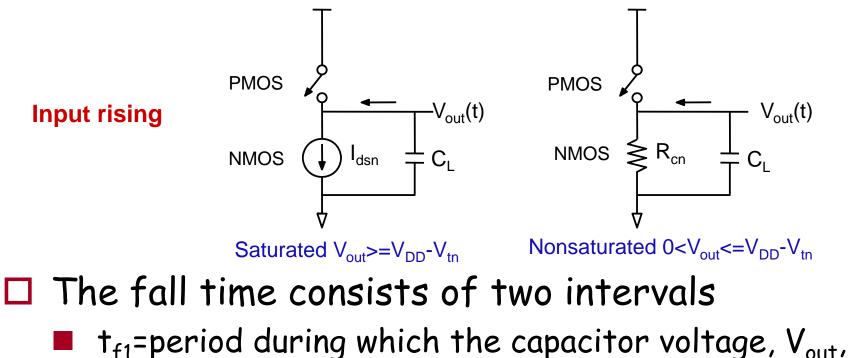


Switching Characteristics

- \Box Rise time (t_r)
 - The time for a waveform to rise from 10% to 90% of its steady-state value
- \Box Fall time (t_f)
 - The time for a waveform to fall from 90% to 10% steady-state value
- \Box Delay time (t_d)
 - The time difference between input transition (50%) and the 50% output level. (This is the time taken for a logic transition to pass from input to output
 - High-to-low delay (t_{df})
 - Low-to-high delay (t_{dr})

Fall Time of the Inverter

Equivalent circuit for fall-time analysis



- t_{f1}=period during which the capacitor voltage, V_{out}, drops from 0.9V_{DD} to (V_{DD}-V_{tn})
- t_{f2}=period during which the capacitor voltage, V_{out}, drops from (V_{DD}-V_{tn}) to 0.1V_{DD}

Timing Calculation

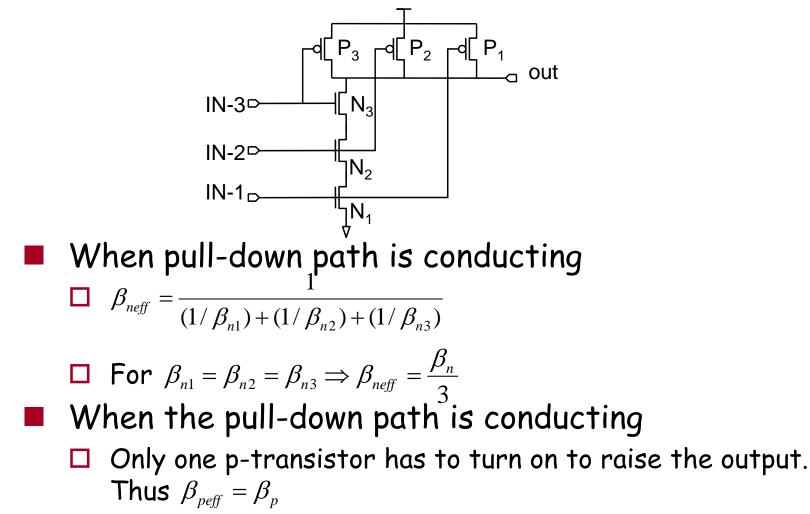
 \Box t_{f1} can be calculated with the current-voltage equation as shown below, while in saturation $C_{L} \frac{dV_{out}}{dt} + \frac{\beta_{n}}{2} (V_{DD} - V_{tn})^{2} = 0$ t_{f2} also can be obtained by the same way Finally, the fall time can be estimated with $t_{f} \approx k \times \frac{C_{L}}{\beta_{n} V_{DD}}$ Similarly, the rise time can be estimated with $t_{r} \approx k \times \frac{C_{L}}{\beta_{p} V_{DD}}$ Thus the propagation delay is $t_p \approx k \times \frac{C_L}{V_{DD}} \left(\frac{1}{\beta_n} + \frac{1}{\beta_n}\right)$

Design Challenges

- $\square \beta_n = \beta_p$, rise time=fall time
 - This implies $W_p = 2 3W_n$
- \square Reduce C_L
 - Careful layout can help to reduce the diffusion and interconnect capacitance
- \Box Increase β_n and β_p
 - Increase the transistor sizes also increases the diffusion capacitance as well as the gate capacitance. The latter will increase the fan-out factor of the driving gate and adversely affect its speed
- □ Increase V_{DD}
 - Designers don't have too much control over this

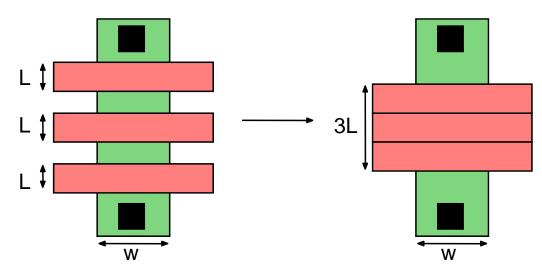
Gate Delays

Consider a 3-input NAND gate as shown below



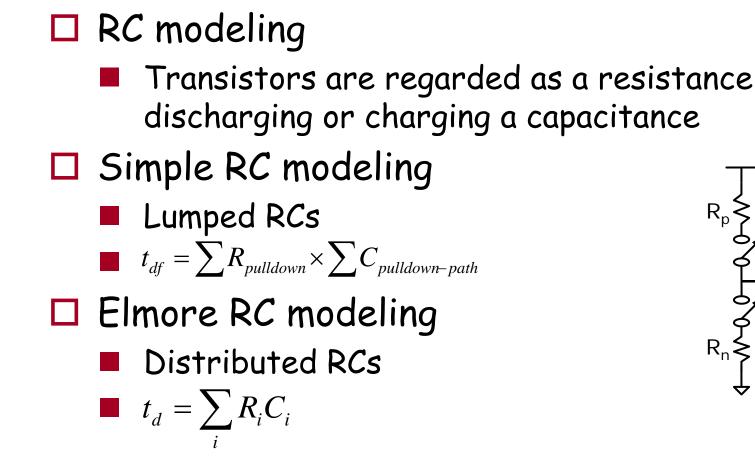
Gate Delays

Graphical illustration of the effect of series transistors



In general, the fall time t_f is mt_f (t_f/m) for m ntransistors in series (parallel). Similarly the rise time t_r for k p-transistors in series (parallel) is kt_r (t_r/k)

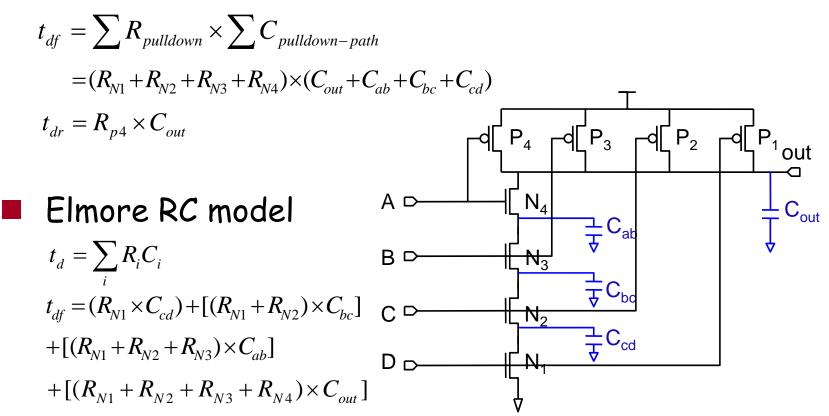
Switch-Level RC Model



Example

Consider a 4-input NAND as shown below

Simple RC model

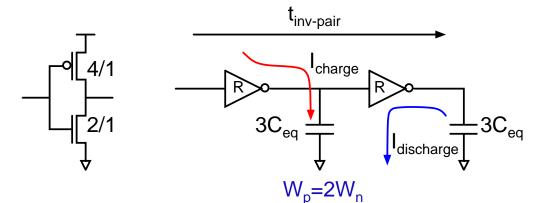


Cascaded CMOS Inverter

- As discussed above, if we want to have approximately the same rise and fall times for an inverter, for current CMOS process, we must make
 - $V_{p} = 2-3W_{n}$
 - Increase layout area and dynamic power dissipation
- In some cascaded structures it is possible to use minimum or equal-size devices without compromising the switching response
- □ In the following, we illustrate two examples to explain why it is possible

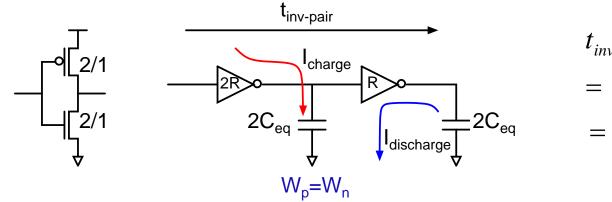
Cascaded CMOS Inverter

Example 1:



$$t_{inv-pair} = t_{fall} + t_{rise}$$
$$= R 3C_{eq} + 2 \frac{R}{2} 3C_{eq}$$
$$= 3RC_{eq} + 3RC_{eq}$$
$$= 6RC_{eq}$$

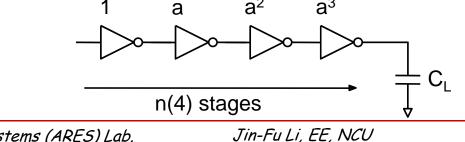
Example 2:



 $t_{inv-pair} = t_{fall} + t_{rise}$ $= R2C_{eq} + 2R2C_{eq}$ $= 6RC_{eq}$

Stage Ratio

- To drive large capacitances such as long buses, I/O buffers, etc.
 - Using a chain of inverters where each successive inverter is made larger than the previous one until the last inverter in the chain can drive the large load in the time required
 - The ratio by which each stage is increased in size is called stage ratio
- Consider the circuit shown below
 - It consists of n-cascaded inverters with stageratio a driving a capacitance C_L



Stage Ratio

- The delay through each stage is at_d, where t_d is the average delay of a minimum-sized inverter driving another minimum-sized inverter
- \Box Hence the delay through n stages is nat_d
- □ If the ratio of the load capacitance to the capacitance of a minimum inverter, C_L/C_g , is R, then $a^n=R$
 - Hence ln(R)=nln(a)
 - Thus the total delay is ln(R)(a/ln(a))t_d
 - The optimal stage ratio may be determined from

$$a_{opt} = e^{\frac{k + a_{opt}}{a_{opt}}} \text{ where } k \text{ is } \frac{C_{drain}}{C_{gate}}$$

Power Dissipation

Instantaneous power

- The value of power consumed at any given instant
- P(t) = v(t)i(t)

Peak power

The highest power value at any given instant; peak power determines the component's thermal and electrical limits and system packaging requirements

$$P_{peak} = Vi_{peak}$$

Average power

The total distribution of power over a time period; average power impacts the battery lifetime and heat dissipation

$$P_{ave} = \frac{1}{T} \int_{t}^{t+T} P(t) dt = \frac{V}{T} \int_{t}^{t+T} i(t) dt$$

Advanced Reliable Systems (ARES) Lab.

Power Analysis for CMOS Circuits

- Two components of power consumption in a CMOS circuit
 - Static power dissipation
 - Caused by the leakage current and other static current
 - Dynamic power dissipation
 - Caused by the total output capacitance
 - □ Caused by the *short-circuit* current
- The total power consumption of a CMOS circuit is

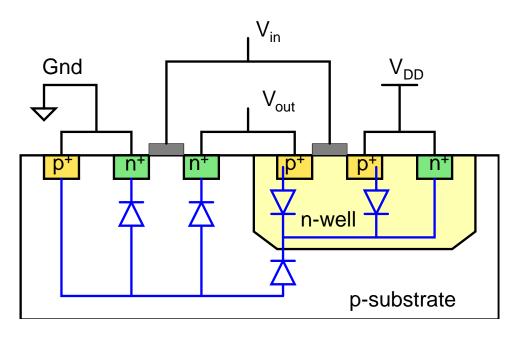
$$P_t = P_s + P_{sw} + P_{sc}$$

P_s: static power (leakage power); P_{sw}: switching power; P_{sc}: short-circuit power

Static Power

□ Static dissipation is major contributed by

- Reverse bias leakage between diffusion regions and the substrate
- Subthreshold conduction



PN junction reverse bias leakage current

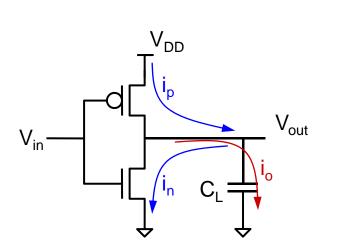
$$i_0 = i_s (e^{qV/KT} - 1)$$

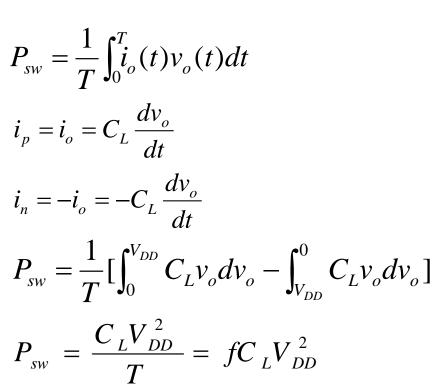
$$P_{s} = \sum_{1}^{n} I_{leakage} \times V_{supply}$$

n=number of devices

Dynamic Power Dissipation

- Switching power
 - Caused by charging and discharging the output capacitive load
- Consider an inverter operated at a switching frequency f=1/T





Power & Energy

- $\square Energy consumption of an inverter (from <math>0 \rightarrow V_{DD}$)
 - The energy drawn from the power supply is $\Box E = QV = C_L V_{DD}^2$
 - The energy stored in the load capacitance is $\Box E_{cap} = \int_{0}^{V_{DD}} C v_o dv_o = \frac{1}{2} C_L V_{DD}^2$
 - The output from $V_{DD} \rightarrow 0$ The \mathcal{E}_{cap} is consumed by the pull-down NMOS
- Low-energy design is more important than lowpower design
 - Minimize the product of power and delay

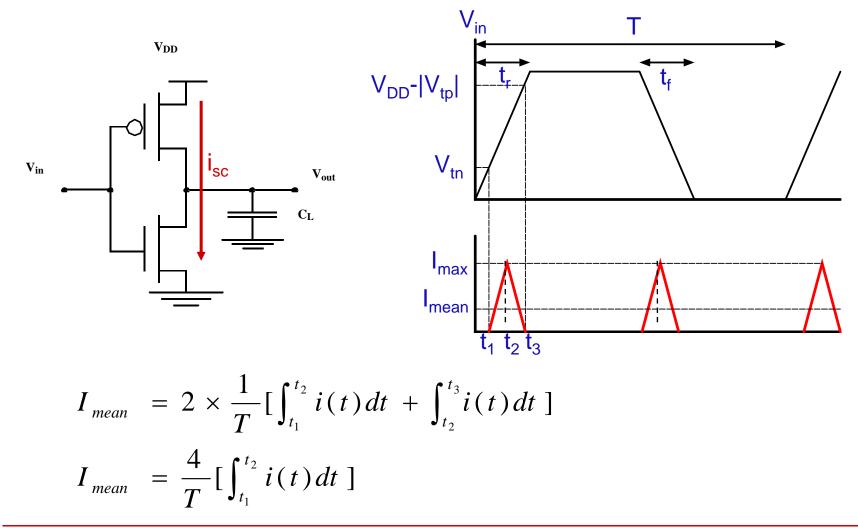
Short-Circuit Power Dissipation

- Even if there were no load capacitance one the output of the inverter and the parasitics are negligible, the gate still dissipate switching energy
- If the input changes slowly, both the NMOS and PMOS transistors are ON, an excess power is dissipated due to the short-circuit current
- We are assuming that the rise time of the input is equal to the fall time
- □ The short-circuit power is estimated as

 $P_{sc} = I_{mean} V_{DD}$

Short-Circuit Power Dissipation

 $\hfill\square$ I_{mean} can be estimated as follows



Short-Circuit Power Dissipation

The NMOS transistor is operating in saturation, hence the above equation becomes

$$I_{mean} = \frac{4}{T} \left[\int_{t_1}^{t_2} \frac{\beta}{2} (V_{in} (t) - V_T)^2 dt \right]$$

$$V_{in} (t) = \frac{V_{DD}}{t_r} t$$

$$t_1 = \frac{V_T}{V_{DD}} t_r$$

$$t_2 = \frac{t_r}{2}$$

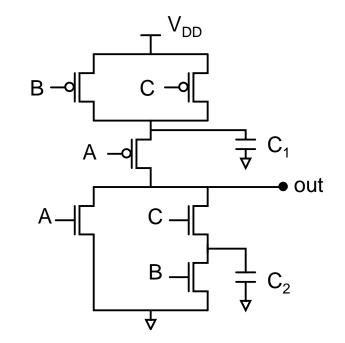
$$P_{sc} = \frac{\beta}{12} (V_{DD} - 2V_T)^3 \tau f \ (t_r = t_f = \tau)$$

Power Analysis for Complex Gates

- □ The dynamic power for a complex gate cannot be estimated by the simple expression $C_L V_{DD} f$
- Dynamic power dissipation in a complex gate
 - Internal cell power
 - Capacitive load power
- Capacitive load power

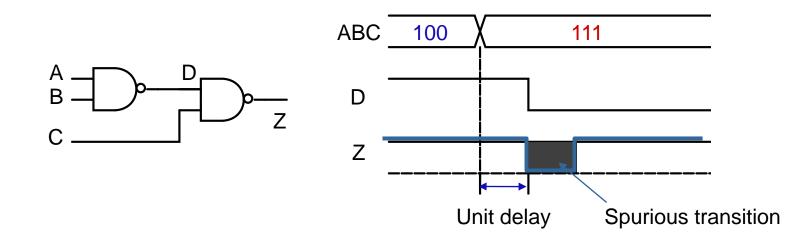
$$P_L = \alpha C_L V_{DD}^2 f$$
Thermal cell nower

$$P_{\text{int}} = \sum_{i=1}^{n} \alpha_{i} C_{i} V_{i} V_{DD} f$$



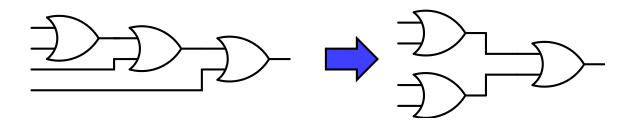
Glitch Power Dissipation

In a static logic gate, the output or internal nodes can switch before the correct logic value is being stable. This phenomenon results in spurious transitions called glitches



Rules for Avoiding Glitch Power

Balance delay paths; particularly on highly loaded nodes



- Insert, if possible, buffers to equalize the fast path
- Avoid if possible the cascaded design
- Redesign the logic when the power due to the glitches is an important component

Principles for Power Reduction

Switching power dissipation

$$P_L = \alpha C_L V_{DD}^2 f$$

$$\bullet P_{\text{int}} = \sum_{i=1}^{n} \alpha_{i} C_{i} V_{i} V_{DD} f$$

- □ Prime choice: *reduce voltage*
 - Recent years have seen an acceleration in supply voltage reduction
 - Design at very low voltage still open question (0.6V...0.9V by 2010)
- Reduce switching activity
- Reduce physical capacitance

Layout Guidelines for LP Designs

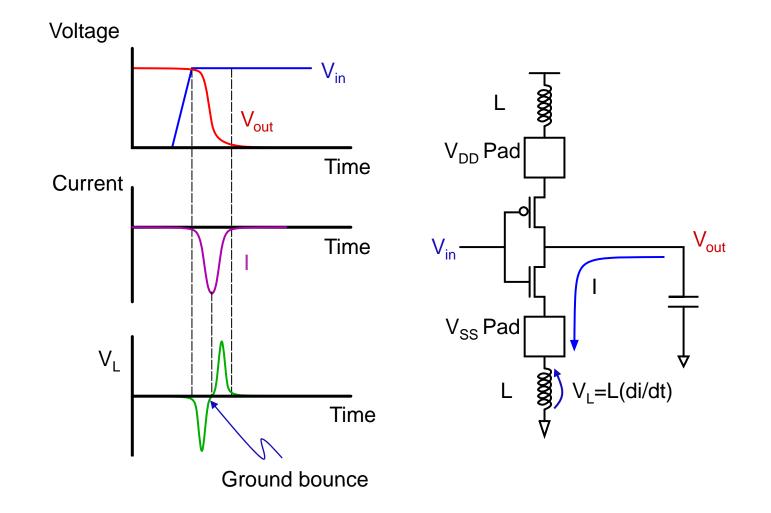
- □ Identify, in your circuit, the high switching nodes
- Keep the wires of high activity nodes short
- Use low-capacitance layers (e.g., metal2, metal 3, etc.) for high capacitive nodes and busses
- Avoid, if possible, the use of dynamic logic design style
- For any logic design, reduce the switching activity, by logic reordering and balanced delays through gate tree to avoid glitch problem
- In non-critical paths, use minimum size devices whenever it is possible without degrading the overall performance requirements
- If pass-transistor logic style is used, careful design should be considered

Sizing Routing Conductors

- Why do metal lines have to be sized?
 - Electromigration
 - Power supply noise and integrity (i.e., satisfactory power and signal voltage levels are presented to each gate)
 - RC delay
- Electromigration is affected by
 - Current density
 - Temperature
 - Crystal structure
- □ For example, the limiting value for 1 um-thick aluminum is $J_{Al} = 1 \rightarrow 2mA / \mu m$

Power & Ground Bounce

□ An example of ground bounce



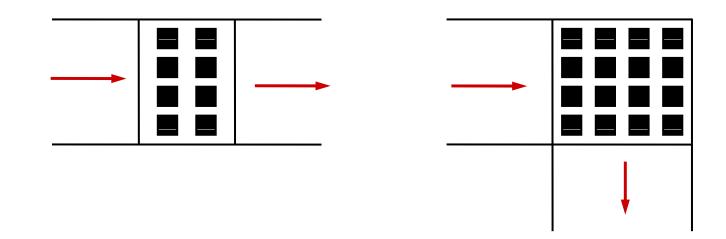
Jin-Fu Li, EE, NCU

Approaches for Coping with L(di/dt)

- Multiple power and ground pins
 - Restrict the number of I/O drivers connected to a single supply pins (reduce the di/dt per supply pin)
- Careful selection of the position of the power and ground pins on the package
 - Avoid locating the power and ground pins at the corners of the package (reduce the L)
- □ Increase the rise and fall times
 - Reduce the di/dt
- □ Adding decoupling capacitances on the board
 - Separate the bonding-wire inductance from the inductance of the board interconnect

Contact Replication

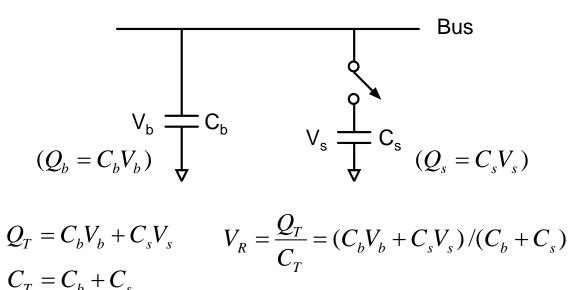
- Current tends to concentrate around the perimeter in a contact hole
 - This effect, called *current crowding*, puts a practical upper limit on the size of the contact
 - When a contact or a via between different layers is necessary, make sure to maximize the contact perimeter (not area)



Charge Sharing

□ Charge Q=CV

- A bus example is illustrated to explain the charge sharing phenomenon
 - A bus can be modeled as a capacitor $C_{\rm b}$
 - An element attached to the bus can be modeled as a capacitor C_s



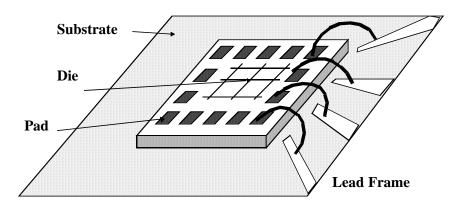
Design Margining

- The operating condition of a chip is influenced by three major factors
 - Operating temperature
 - Supply voltage
 - Process variation
- One must aim to design a circuit that will reliably operate over all extremes of these three variables
- Design corners
 - Simulating circuits at all corners is needed
 SS

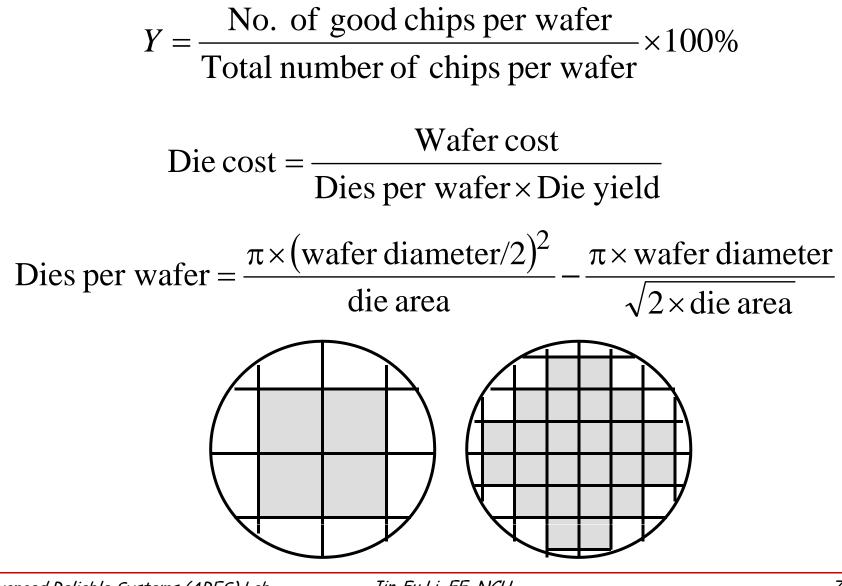
Package Issues

- Packaging requirements
 - Electrical: low parasitics
 - Mechanical: reliable and robust
 - Thermal: efficient heat removal
 - Economical: cheap
- Bonding techniques

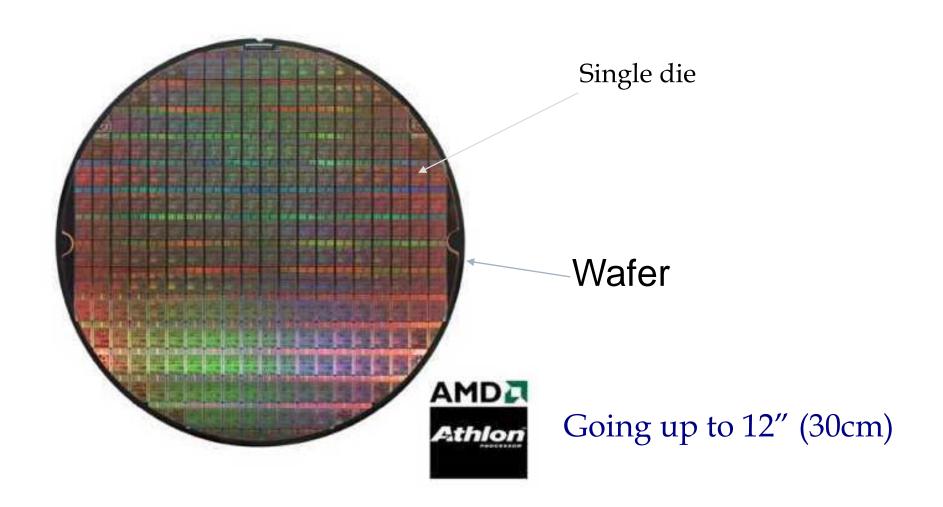
Wire Bonding



Yield Estimation



Die Cost



Scaling Theory

- Consider a transistor that has a channel width W and a channel length L
- We wish to find out how the main electrical characteristics change when both dimensions are reduced by a scaling factor S>1 such that the new transistor has sizes

$$\widetilde{W} = \frac{W}{S} \qquad \widetilde{L} = \frac{L}{S}$$

Gate area of the scaled transistor

$$\widetilde{A} = \frac{A}{S^2}$$

$$\square \text{ The aspect ratio of the scaled transistor}$$

$$\square \frac{W}{L} = \frac{\widetilde{W}}{\widetilde{L}}$$

Scaling Theory

- □ The oxide capacitance is given by
 - C_{ox} = $\frac{\mathcal{E}_{ox}}{t_{ox}}$ If the new transistor has a thinner oxide that is decreased as $\tilde{t}_{ox} = \frac{t_{ox}}{S}$, then the scaled device has $\tilde{C}_{ox} = SC_{ox}$
- The transconductance is increased in the scaled device to

 $\vec{\beta} = S\beta$

The resistance is reduced in the scaled device to $\widetilde{R} = \frac{1}{S\beta(V_{DD} - V_T)} = \frac{R}{S}$

Assume that the supply voltage is not altered

Scaling Theory

On the other hand, if we can scale the voltages in the scaled device to the new values of

$$\widetilde{V}_{DD} = \frac{V_{DD}}{S} \quad \widetilde{V}_T = \frac{V_T}{S}$$

The resistance of the scaled device would be unchanged with $\tilde{R} = R$

The effects of scaling the voltage, consider a scaled MOS with reduced voltages of

$$\widetilde{V}_{DS} = \frac{V_{DS}}{S} \quad \widetilde{V}_{GS} = \frac{V_{GS}}{S}$$

The current of the scaled device is given by

$$\widetilde{I}_D = \frac{S\beta}{2} \left[\left(\frac{V_{GS}}{S} - \frac{V_T}{S} \right) \frac{V_{DS}}{S} \right] = \frac{I_D}{S}$$

The power dissipation of the scaled device is

$$\widetilde{P} = \widetilde{V}_{DS} \widetilde{I}_D = \frac{V_{DS} I_D}{S^2} = \frac{P}{S^2}$$

Summary

- We have presented models that allow us to estimate circuit timing performance, and power dissipation
- Guidelines for low-power design have also been presented
- The concepts of design margining were also introduced
- □ The scaling theory has also introduced