Chapter 7 Sequential Circuits

Jin-Fu Li

Advanced Reliable Systems (ARES) Lab.

Department of Electrical Engineering

National Central University

Jungli, Taiwan

Outline

- □ Latches & Registers
- □ Sequencing Timing Diagram

Sequencing

- □ Combinational logic
 - Output depends on current inputs
- □ Sequential logic
 - Output depends on current and previous inputs
 - Requires separating previous, current, future
 - Called state or tokens
 - Ex: FSM, pipeline

Sequencing Elements

- □ Latch: Level sensitive
 - A.k.a. transparent latch, D latch
- □ Flip-flop: edge triggered
 - A.k.a. master-slave flip-flop, D flip-flop, D

register

- □ Timing Diagrams
 - Transparent
 - Opaque
 - Edge-trigger

Latches

□ Negative-level sensitive latch

□ Positive-level sensitive latch

Registers

 Positive-edge triggered register (singlephase clock)

Registers

Operations of the positive-edge triggered register

Registers

CMOS circuit implementation of the positiveedge triggered register

Single-Phase Latch

Positive active-static latch

- 1. Low area cost
- 2. Driving capability of D must override the feedback inverter

Typical Latch Symbolic Layouts

CVSL (Differential) Style Register

- □ The following figure shows latches based on a CVSL structure
 - An N and a P version are shown that are cascaded to form a register

Double-Edge Triggered Register

☐ The following figure shows latches that may be used to clock data on both edges of the clock

Double-Edge Triggered Register

□ Double-edge triggered register can be implemented by combining Latch 1 & Latch 2 as follows

Asynchronously Register

□ Asynchronously resettable register

Asynchronously Register

Asynchronously resettable and settable register

Dynamic Latches & Registers

□ Dynamic single clock latches

Dynamic single clock registers

Dynamic Latches

□ Clock active high latch

D_n	CLK	X_n	Q_n
0	Н	1	0
1	Н	0	1
1	L	X_{n-1}	Q_{n-1}
0	L	1	Q_{n-1}

Clock active high latch with buffer

Dynamic Latches

□ Clock active low latch

D_n	CLK	X_n	Q_n
0	L	1	0
1	L	0	1
1	Н	0	Q_{n-1}
0	Н	X_{n-1}	Q_{n-1}

□ Clock active low latch with buffer

Dynamic Latches

Clock active high and low latches without feedback

- □ The problem of leakage current
 - Assume that the capacitance of node X is 0.002pF and the leakage current I is 1nA
 - \square Therefore, T=CV/I=0.002pFx5V/1nA=100us
 - □ That is, the latch needs to be refreshed each 100us. Otherwise, the output Q will become high

Sequencing Methods

- □ Flip-flops
- □ 2-Phase Latches
- ☐ Pulsed Latches

Timing Diagrams

Contamination and Propagation Delays

t _{pd}	Logic Prop. Delay	
t_{cd}	Logic Cont. Delay	
t_{pcq}	Latch/Flop Clk-Q Prop Delay	
t_{ccq}	Latch/Flop Clk-Q Cont. Delay	
t_{pdq}	Latch D-Q Prop Delay	
t_{pcq}	Latch D-Q Cont. Delay	
t _{setup}	Latch/Flop Setup Time	
t_{hold}	Latch/Flop Hold Time	

Max-Delay: Flip-Flops

$$t_{pd} \leq T_c - \underbrace{\left(t_{\text{setup}} + t_{pcq}\right)}_{\text{sequencing overhead}}$$

Max Delay: 2-Phase Latches

Max Delay: Pulsed Latches

$$t_{pd} \leq T_c - \max\left(t_{pdq}, t_{pcq} + t_{\text{setup}} - t_{pw}\right)$$
 sequencing overhead
$$\begin{array}{c} D_1 \\ D_2 \\ D_3 \\ D_4 \\ D_2 \\ D_3 \\ D_4 \\ D_6 \\ D_7 \\ D_8 \\ D_8 \\ D_9 \\$$

Min-Delay: Flip-Flops

$$t_{cd} \ge t_{hold} - t_{ccq}$$
 Clk
 Clk

Min-Delay: 2-Phase Latches

$$t_{cd1}, t_{cd2} \ge t_{\text{hold}} - t_{ccq} - t_{\text{nonoverlap}}$$

Hold time reduced by nonoverlap

Paradox: hold applies twice each cycle, vs. only once for flops.

But a flop is made of two latches!

Min-Delay: Pulsed Latches

$$t_{cd} \ge t_{\text{hold}} - t_{ccq} + t_{pw}$$

Hold time increased

by pulse width

Time Borrowing

- ☐ In a flop-based system:
 - Data launches on one rising edge
 - Must setup before next rising edge
 - If it arrives late, system fails
 - If it arrives early, time is wasted
 - Flops have hard edges
- ☐ In a latch-based system
 - Data can pass through latch while transparent
 - Long cycle of logic can borrow time into next
 - As long as each loop completes in one cycle

Time Borrowing Example

Loops may borrow time internally but must complete within the cycle

How Much Borrowing?

2-Phase Latches

$$t_{\text{borrow}} \le \frac{T_c}{2} - \left(t_{\text{setup}} + t_{\text{nonoverlap}}\right)$$

Pulsed Latches

$$t_{\mathrm{borrow}} \leq t_{pw} - t_{\mathrm{setup}}$$

Clock Skew

- ☐ We have assumed zero clock skew
- □ Clocks really have uncertainty in arrival time
 - Decreases maximum propagation delay
 - Increases minimum contamination delay
 - Decreases time borrowing

Skew: Flip-Flops

$$t_{pd} \leq T_c - \underbrace{\left(t_{pcq} + t_{\text{setup}} + t_{\text{skew}}\right)}_{\text{sequencing overhead}}$$

$$t_{cd} \ge t_{\rm hold} - t_{ccq} + t_{\rm skew}$$

Skew: Latches

2-Phase Latches

$$t_{pd} \leq T_c - \underbrace{\left(2t_{pdq}\right)}_{\text{sequencing overhead}}$$

$$t_{cd1}, t_{cd2} \geq t_{\text{hold}} - t_{ccq} - t_{\text{nonoverlap}} + t_{\text{skew}}$$

$$t_{\text{borrow}} \le \frac{T_c}{2} - \left(t_{\text{setup}} + t_{\text{nonoverlap}} + t_{\text{skew}}\right)$$

Pulsed Latches

$$t_{pd} \leq T_c - \underbrace{\max\left(t_{pdq}, t_{pcq} + t_{\text{setup}} - t_{pw} + t_{\text{skew}}\right)}_{\text{sequencing overhead}}$$

$$t_{cd} \geq t_{\rm hold} + t_{pw} - t_{ccq} + t_{\rm skew}$$

$$t_{\text{borrow}} \le t_{pw} - \left(t_{\text{setup}} + t_{\text{skew}}\right)$$

Two-Phase Clocking

- ☐ If setup times are violated, reduce clock speed
- ☐ If hold times are violated, chip fails at any speed
- ☐ In this class, working chips are most important
 - No tools to analyze clock skew
- ☐ An easy way to guarantee hold times is to use 2-phase latches with big nonoverlap times
- \square Call these clocks ϕ_1 , ϕ_2 (ph1, ph2)

Safe Flip-Flop

- In class, use flip-flop with nonoverlapping clocks
 - Very slow nonoverlap adds to setup time
 - But no hold times
- ☐ In industry, use a better timing analyzer
 - Add buffers to slow signals if hold time is at risk

Clock Distribution

- In a large CMOS chip, clock distribution is a serious problem
 - For example,
 - □ V_{dd}=5V
 - \Box C_{reg} =2000pF (20K register bits @ 0.1pF)
 - \Box $T_{clk}=10ns$
 - \Box $T_{rise/fall}=1ns$
 - \Box $I_{peak} = C(dv/dt) = (2000p)x(5/1n) = 10A$
 - \square P_d= $C(V_{dd})^2$ f=2000px25x100=5W
- \square Methods for reducing the values of I_{peak} and P_d
 - Reduce C
 - Interleaving the rise/fall time

Clock Distribution

- □ Clocking is a floorplanning problem because clock delay varies with position on the chip
- □ Ways to improve clock distribution
 - Physical design
 - □ Make clock delays more even
 - ☐ At least more predictable
 - Circuit design
 - Minimizing delays using several stages of drivers
- Two most common types of physical clocking networks
 - H-tree clock distribution
 - Balanced-tree clock distribution

H-Tree Clock Distribution

H-Tree Clock Distribution

Source: Prof. Irwin

Balanced-Tree Clock Distribution

Reduce Clocking Power

- □ Techniques used to reduce the high dynamic power dissipation
 - Use a low capacitance clock routing line such as metal3.
 This layer of metal can be, for example, dedicated to clock distribution only
 - Using low-swing drivers at the top level of the tree or in intermediate levels

Power & Ground Distribution

(a) Finger-shaped network

(b) Network with multiple supply pins

Source: Prof. Irwin