EE6013 VLSI Design—Homework 2

1. RC Model of MOS Transistor (3 points)

Construct the RC switch model for the NMOS transistor layout in Figure 1. Assume a power supply voltage of 3V and that the dimensions are in units of microns, and parameters of the NMOS are $(L = 0.5\mu m, V_{tn} = 0.6V, k_n = 150\mu A/V^2, C_{ox} = 2.70 f F/\mu m^2, C_{ja} = 0.86 f F/\mu m^2, \lambda = 0.5\mu m$ and $C_{jp} = 0.24 f F/\mu m$.

Figure 1: The layout view of an NMOS.

2. CMOS Design (3 points)

Design a CMOS circuit to implement the truth table shown in Table 1. This circuit has 4 data inputs (a_0-a_3) , 4 control inputs (c_0-c_3) , and 4 data outputs (z_0-z_3) .

c_3	c_2	c_1	c ₀	Z3	Z2	z ₁	Z0
0	1	1	1	a_3	a_2	a_1	a ₀
1	0	1	1	a_2	a_1	a_0	a_3
1	1	0	1	a_1	a ₀	a_3	a_2
1	1	1	0	a_0	a_3	a_2	a_1
1 1	1 1	0 1	1 0	a ₁ a ₀	a ₀ a ₃	a_3 a_2	a_2 a_1

Table	1:	Truth	table	of a	CMOS	circuit.

3. Crosstalk Simulation (4 points)

Figure 2 shows two designs of parallel wires, where the $\times 1$ inverter means that the sizes of NMOS and PMOS are $4\mu m/0.18\mu m$, and $2\mu m/0.18\mu m$. Simulate these two cases with Hspice. Show the waveforms of S_a and S_v .

Figure 2: Two different designs of parallel wires.

4. Article Reading (4 points)
Read the article entitled "The High-k solution", which is published in *IEEE Spectrum*, vol. 44, no. 10, pp. 23-29, Oct. 2007. Then, write a summary about this article.

1-2