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Abstract

Content addressable memory (CAM) is one key com-
ponent in many digital systems. Although the CAM cell
usually is implemented with a RAM cell and a comparison
logic, the CAM testing is more difficult than the RAM test-
ing. Also, the CAM testing is very different from the RAM
testing. Most stuck-at faults (SAFs) in the RAM peripheral
circuitry can be mapped to the RAM cell faults. This cannot
be analogous to the testing of the priority encoder of CAMs.
This paper presents a test algorithm for testing SAFs of the
priority encoder in a CAM. The test algorithm only requires
3� -2 Write operations and �+2 Compare operations to
cover 100% stuck-at faults of the CMOS priority encoder
of an���-bit CAM. Compared with typical tests for CAM
cell array faults, the fault coverage of SAFs in the priority
encoder is increased from 90.2% or 60.5% to 100% for a
CAM with 64 words.

Keywords: Content addressable memories, comparison
faults, priority address encoder faults.

1 Introduction

Content addressable memories (CAMs) are widely used
in digital systems, such as networking, cryptography, com-
pression, and so on. A CAM cell consists of a storage cell
(e.g., SRAM cell or DRAM cell) and a comparison logic,
such that a CAM can execute the function of parallel search
(compare). Thus, functional faults of a CAM cell array usu-
ally consists of RAM faults and Comparison faults [1–3].
Testing Comparison faults of a CAM is more difficult than
testing RAM faults of a CAM, since the fault effects of
Comparison faults must be observed by the comparison re-
sults (the output of Hit Signal Generator and/or Priority En-
coder). This results that the CAM testing is more difficult
than the RAM testing.

Many CAM test schemes have been reported before (see,
e.g., [1–17]). A test methodology for detecting stuck-at
faults in the memory management unit was reported in [4].
The BIST scheme presented in [5] is used to detect stuck-
at faults, adjacent cell coupling faults, and the neighbor-
hood pattern sensitive faults (NPSFs) of dynamic CAMs.

A design-for-testability (DFT) circuitry also is added to the
Hit signal generator to determine whether there is a hit for
all the even match lines, and separately for all the odd match
lines. In [6], a BIST circuit to test a reconfigurable CAM
was proposed. The test circuit only covers approximately
75% stuck-open faults and comparison faults in the array.
The BIST circuit [7] is designed to test a cache memory
(including the CAM and RAM blocks) and incorporates a
serial interface into the cache such that it can execute a com-
plete SMARCH algorithm [18] on the CAM Read/Write
port. Another BIST architecture with a parallel test ap-
proach was reported in [9]. It reduces the testing time by
modifying the address decoder such that the parallel test
approach can be used to detect coupling faults and NPSFs.
In [11], a specific test algorithm is used to test a CAM
whose priority encoder returns the lowest matched address.
A fault effect can be masked if the fault occurs on a word
whose address is higher than the matched address. A match
compare circuit is added to each match line output such that
the array can be fully tested by the BIST circuit.

In [8], a functional fault model for CAMs was derived
by investigating the functional failures in the storage cell
and the comparison logic. In [10], an approach for model-
ing and testing memories and its application to CAMs was
presented. March-like test algorithms presented in [1] are
used to detect the CAM-specific comparison faults. As-
sume that the comparison result is observed only by the
Hit output, the test algorithms can cover 100% comparison
faults. But the fault coverage of conventional RAM faults is
low. In [12], test algorithms for CAMs which can execute
Read and Compare operations concurrently were proposed.
Thus, the target CAM has the basic cells with individual bit
lines and comparison lines. The authors also assume that
the comparison result is observed by the priority encoder.
In [13], a test methodology for testing the delay faults of
CAMs was presented. The test algorithms and fault location
algorithms reported in [2, 3] can detect 100% typical RAM
faults and CAM-specific comparison faults. Here the CAM
with Read and Compare operations are assumed. Further-
more, a diagnosis scheme was used to distinguish different
types of RAM faults and comparison faults [15].
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So far, the mentioned previous works all focus on the
testing of binary CAMs. Recently, several works discuss
the testing of ternary CAMs. Different from binary CAMs,
a ternary CAM cell can store two binary values to represent
one of three logic states: 0, 1, and don’t care. In [14], a test
algorithm was proposed to detect the search path failures
of ternary CAMs based on transistor-level faults. In [16],
the author presents a test algorithm for comparison faults of
ternary CAMs based on comparison faults of binary CAMs.
In [17], comparison faults based on short and open defects
was defined. A test algorithm for testing these comparison
faults also was developed.

The previous works described above all develop the test
algorithms for the CAM cell array faults, i.e., comparison
faults and RAM faults. However, the CAM testing is very
different from the RAM testing. In addition to the Com-
parison faults that must be covered, testing CAM peripheral
circuitries also cannot be analogous to testing RAM periph-
eral circuitries. In RAMs, most of stuck-at faults (SAFs) in
peripheral circuitries can be mapped to the cell array faults.
But this is not true for CAMs, SAFs in some peripheral cir-
cuitries cannot be mapped to the cell array faults. That is, it
is not enough if only the test algorithms for cell array faults
are applied to test the CAMs.

This paper presents a test algorithm for testing SAFs of
the priority encoder in a CAM. The test algorithm only re-
quires 3� -2 Write operations and �+2 Compare opera-
tions to cover 100% SAFs of the CMOS priority address
encoder of an ���-bit CAM. Compared with the conven-
tional tests for CAM cell array faults, the fault coverage of
SAFs in the prefix computation logic of the priority encoder
is increased from 90.2% or 60.5% to 100% for a CAM with
64 words.

The rest of this paper is organized as follows. Section 2
overviews the architecture of a typical CAM and tests for
CAM cell array faults. Section 3 describes the proposed
test algorithm for the Priority Encoder. Section 4 explains
the testing of Hit Signal Generator. Section 5 summarizes
the simulation results of fault coverage. Finally, Sec. 6 con-
cludes this paper.

2 Preliminary

2.1 Typical CAM Architecture

Figure 1 shows a typical CAM architecture. The Ad-
dress Decoder and Data I/O are similar to those in a RAM.
When the CAM executes a Compare operation, the com-
pared data (comparand) is prefetched into the Comparand
Register. The Mask Register stores a binary pattern deter-
mining whether the corresponding bits in a word are to be
masked from further Write and Compare operations or not.
Each of valid bits (VB�) indicates whether the match signal
of the corresponding word is valid or invalid. The Hit Sig-
nal Generator evaluates the valid match signals, and gener-
ates a hit output (Hit=1) if there is at least one valid match.

The Priority Encoder exports the highest priority matched
address (either the lowest matched address or the highest
matched address).
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Figure 1: A typical CAM architecture.

Figure 2 shows a �-bit CAM word with NOR-type
match line. Each cell is composed of an SRAM cell and
a comparison logic (formed by transistors T3, T4, and T5)
[19], such that the CAM can perform Compare operation
simultaneously. Bit line and search line of the CAM cell
share the same line (BL�/SL�). Also, BL�/SL� denotes the
complement of BL�/SL�. A CAM usually has the follow-
ing basic operations: Write, Read, Compare, Erase, and
Masked Compare. The Read and Write operations are the
same as those of a RAM. The Masked Compare operation
compares an input pattern with all words in the CAM simul-
taneously, with one or more bits blocked (not compared)
by setting the corresponding bits of the mask pattern. The
Masked Write operation writes an input pattern to a speci-
fied word, with one or more bits blocked (not written) by
setting the corresponding bits of the mask pattern. The
Write operations also set the valid bit of the correspond-
ing word so that it is in the valid state. The word-line pass
transistors (T1 and T2) are turned off when the CAM exe-
cutes the Compare and Masked Compare operations. The
match lines (M�) are precharged to Vdd before the Com-
pare operation, by resetting the Precharge signal. The input
pattern is then compared with the all the CAM words si-
multaneously. If the pattern stored in any word is the same
as the input pattern, the corresponding match signal will be
high (1) since all the T5 transistors of the word are turned
off. Also, the Hit signal is 1. The Erase operation resets the
corresponding Valid Bit Flip-Flop of a specified word.

2.2 Tests for CAM Cell Array Faults

CAM cell array major consists of two types of faults:
RAM faults and Comparison faults [1]. Testing RAM faults
of a CAM is similar to that of a RAM. Typical RAM faults,
such as stuck-at faults and coupling faults, can be detected
by March tests which consists of Read and Write test oper-
ations [2,3]. However, testing Comparison faults of a CAM
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Figure 2: An NOR-type CAM word with �-bit cells.

needs a test algorithm (test) which consists of Write and
Compare test operations. The Compare operation is used
to observe the fault effect of Comparison faults through the
Priority Encoder and/or Hit Signal Generator.

When the test algorithms reported in the previous works
[1–3, 12, 13] for Comparison faults are applied to the CAM
under test, the expected responses observed by the match
signals (��,��,� � �,�� -�) can be classified into four types
of response patterns shown in Table 1. As the table shows,
the second row denotes that� Compare operations are per-
formed and � corresponding expected responses are called
Type-1 response patterns. The last column denotes the
fault-free output of comparison results. In this case, the
comparison results are observed by the Hit Signal Genera-
tor. The third row also shows � expected responses with
respect to � Compare operations, but the output of com-
parison results are observed by the Priority Encoder with
exporting the highest matched address. On the contrary, if
the lowest matched address is exported, the corresponding
expected match signals are shown in the fourth row. The
last row shows an all-0 expected response when a Compare
operation is executed and the comparison result is propa-
gated to the Hit output.

3 Testing Priority Encoder Faults of CAMs

3.1 Priority Encoder

When a CAM performs a Compare operation, multiple
matches may occur. To identify only one matched word, a
priority encoder usually is used to block the matched words
with lower priorities and export the address of the match
word with the highest priority. The highest priority may be
the highest address or the lowest address. Without loss of
generality, we assume that the least significant bit of the
input corresponds to the highest priority, i.e., the lowest
matched address, in this paper. Figure 3 shows the architec-
ture of a typical priority encoder. A priority encoder con-
sists of a prefix computation logic (PCL) and an encoder.
Assume that �=��. The ��-to-� encoder only has an as-
sertive logic value, either 0 or 1, on one of �� input lines

and causes the corresponding binary code to appear at the
output, Address. Thus, the encoder can easily be tested with
functional patterns, i.e., walking-1 patterns. Therefore, we
first discuss the testing of PCL.
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Figure 3: A typical priority encoder architecture.

Let inputs and outputs of the PCL be ���, ��, � � �,
�� -�� and ���, ��, � � �, �� -��, respectively. Then the
boolean function of the PCL can be expressed as [20]:

�� � ��

�� � �� ���

�� � �� ��� ���

...

���� � ���� ����� � � � � ���

Let ��=�
�=�-�
�=� � � , then ��=�� and ��=����� for

1���� -1 and ��N. Thus, the PCL is usually realized by
a two-stage logic circuit including a group logic and a out-
put logic. The output logic is implemented by � -1 2-input
ANDs which generate� -1 outputs �� for 1���� -1. Also,
the inputs of each 2-input AND are �� and ��. The group
logic realizes the function of �� for 1���� -2. Different
group networks (e.g., ripple, lookahead, increment, tree,
etc. [20]) can be used to build the group logic. For example,
Fig. 4 shows a PCL implemented with ripple group logic
which is comprised of the AND gates in shade.
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Table 1: Types of expected responses observed by the
match signals when Compare operations are executed in an
���-bit CAM.

# Compare Expect responses Type Result
Operations (��,��,� � �,����) output

(1,0,0,� � �,0,0,0)
(0,1,0,� � �,0,0,0)
(0,0,1,� � �,0,0,0)

�
... Type-1 Hit

(0,0,0,� � �,1,0,0)
(0,0,0,� � �,0,1,0)
(0,0,0,� � �,0,0,1)
(1,0,0,� � �,0,0,0)
(1,1,0,� � �,0,0,0)
(1,1,1,� � �,0,0,0) Highest

�
... Type-2 Matched

(1,1,1,� � �,1,0,0) Address
(1,1,1,� � �,1,1,0)
(1,1,1,� � �,1,1,1)
(0,0,0,� � �,0,0,1)
(0,0,0,� � �,0,1,1)
(0,0,0,� � �,1,1,1) Lowest

�
... Type-3 Matched

(0,0,1,� � �,1,1,1) Address
(0,1,1,� � �,1,1,1)
(1,1,1,� � �,1,1,1)

1 (0,0,0,� � �,0,0,0) Type-4 Miss

3.2 Testing Stuck-At Faults of PCL

According to the description above, we divide the test-
ing of PCL into two parts: testing of group logic and testing
of output logic. In this paper, we consider the PCL testing
based on single stuck-at fault (SAF). The testing of output
logic is first discussed. The output logic consists of � -1 2-
input AND gates. It is well known that the test patterns
for SAFs of a 2-input AND are �11,01,10�. We denote
the �th AND gate of the output logic as AND O� which
output is �� and inputs are �� and ��. Table 2 lists the
test patterns for detecting SAFs of the output logic. If the
all-1 test pattern is applied to the input of the PCL, each
AND O can receive the test pattern�01�. The AND O�

can receive the test �11� if the input of the PCL receives
the test pattern (01XX� � �XX), where X denotes don’t care.
Since ����� -� are 0s when ��=1, 0 or 1 can be applied
to ����� -�. In the same way, we see that every AND
gate of the output logic can receive the test �11� when the
test patterns shown in the third row of Table 2 are applied. If
the all-0 test pattern is applied to the PCL, all AND O gates
receive the test 10, since the values of �� for 1���� -1 all
are 1s.

Subsequently, we discuss the testing of group
logic. The boolean function of the group logic is
��=�

�=�-�
�=� �� for 1���� -1, i.e., ��=��, ��=�����,
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Figure 4: A CMOS PCL with ripple group logic.

Table 2: Test patterns for detecting SAFs of the output
logic.

Test pattern Test data (����)
(���� � � �����) received by AND O�

(1111� � �1111) 01 received by all AND Os
(01XX� � �XXXX) 11 received by AND O�

(001X� � �XXXX) 11 received by AND O�

(0001� � �XXXX) 11 received by AND O�

...
...

(0000� � �1XXX) 11 received by AND O���

(0000� � �01XX) 11 received by AND O���

(0000� � �001X) 11 received by AND O���

(0000� � �0001) 11 received by AND O���

(0000� � �0000) 10 received by all AND Os

� � �, �� -�=������� � � ��� -�. Thus, the group logic
consists of � -1 inputs and � -1 outputs. In this paper
we consider the PCL testing based on ripple group logic.
As Fig. 4 shows, SAFs at the outputs �� of the ripple
group logic are detected by the test patterns shown in
Table 2 since �� also are the inputs of the output logic.
Therefore, only SAFs at the inputs of the group logic
need to be covered. That is, we can consider the testing
of the ripple group logic as the testing of an AND gate
with � -1 inverted inputs (���� � � �����) and a output
�� -�. Because �� -� is not the output of the PCL, the fault
effect propagated through the �� -� must be propagated
to the output �� -�. Since �� -�=�� -� � �� -�, the input
�� -� must have the value of logic 1 such that the fault
propagation path is sensitized. Table 3 summarizes the
test patterns for detecting SAFs at the inputs of the group
logic. As the table shows, if the test pattern �000� � �001�
is applied, inputs of the � -1-input AND gate of the group
logic (AND G) receive all-1 data. Then stuck-at-0 faults at
the inputs of the AND G gate can be detected. When the
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test patterns in the second row of Table 3 are applied to the
inputs of the PCL, the stuck-at-1 faults at the inputs of the
AND G gate can be detected.

Table 3: Test patterns for detecting SAFs of group logic.
Test pattern Test data

(���� � � �����) received by the AND G
(0000� � �0001) 111� � �111 received by AND G
(1000� � �0001) 011� � �111 received by AND G
(0100� � �0001) 101� � �111 received by AND G
(0010� � �0001) 110� � �111 received by AND G

...
...

(0000� � �1001) 111� � �011 received by AND G
(0000� � �0101) 111� � �101 received by AND G
(0000� � �0011) 111� � �110 received by AND G

For example, if the test pattern shown in the second row
of Table 3 is applied to the inputs of the ripple group logic
with two-input AND gates as shown in Fig. 4, each two-
input AND gate of the group logic receives the test data
�11�. That is, the fault-free output of�� -�. Since�� -�=1,
a stuck-at-0 fault existing at any one of the AND gates
changes the value of the output �� -� from 1 to 0. If the first
test pattern shown in the last row of Table 3 is applied, the
AND gate with the output�� receives the test data �01� and
the fault-free value of �� is 0. Therefore, the AND gates
with the outputs��, ��, � � �, �� -� also receive the test data
�01�. If the second (third, � � �, last) test pattern shown in
the same row is applied, the AND gate with the output ��

(��, � � �, �� -�) receives the test data �10�. Consequently,
all the AND gates of the ripple group logic can receive the
test data �11,10,01�. That is, all SAFs of the ripple group
logic are covered.

In a similar way, tests for detecting SAFs of the PCLs
with the other types of group logics can be developed. For
example, Fig. 5 shows an 8-bit PCL with lookahead group
logic [20]. As the figure shows, the 8-bit inputs of the PCL
is partitioned into two parts for prefix computation. Appar-
ently, all SAFs of the output logic also can be covered by
the test patterns shown in Table 2. The testing of lookahead
group logic also is similar to that of ripple group logic. We
can consider the testing of the lookahead group logic as the
testing of two individual group logics: one 5-bit group logic
and one 8-bit group logic. Both the group logics can be
tested with the test patterns shown in Table 3 by replacing
the � with 4 and 7, respectively. Compared with the ripple
group logic, the number of test patterns for the lookahead
group logic is increased. In the sequel of this paper, we
discuss the testing of CAM priority encoder with the rip-
ple group logic. The testing of CAM priority encoder with
the other possible group logic can be developed in a similar
way.
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Figure 5: A CMOS PCL with lookahead group logic.

3.3 Test for CAMs with Priority Encoder Faults

According to Tables 2 and 3, we summarize the test pat-
terns for detecting SAFs of the PCL with ripple group logic
in Table 4. Thus, we need a test algorithm which can gen-
erate the match signal responses as shown in Table 4 on the
match lines of a CAM under test. Let the size of the CAM
is ���, where� is the number of words of the CAM and
� is the number of bits of a word. Also, assume that the
priority encoder exports the lowest matched address when
a Compare operation is executed.

Table 4: Test patterns for detecting SAFs of PCL with ripple
group logic.

Test pattern
(���� � � �����)

(1111� � �1111)
(0000� � �0000)
(0000� � �0001)
(1000� � �0001)
(0100� � �0001)
(0010� � �0001)

...
(0000� � �1001)
(0000� � �0101)
(0000� � �0011)

The proposed test algorithm (TPE) for detecting SAFs
of priority encoder faults is depicted in Algorithm 1. The
test procedure of TPE can be divided into four steps. Step
1 initializes the CAM under test into the desired state. Af-
ter Step 1, state of bit �-1 of all words is all-0. Then a
Mask Compare operation which compares 0 with bit �-1
of all words of the CAM is executed in Step 2. All words
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issue matched signals to the priority encoder and the out-
put matched address is 0, since the state of bit �-1 of all
words are all-0. If the output matched address is not 0, the
priority encoder is faulty. Similarly, Step 3 executes the op-
eration the same as Step 2 by replacing the compared data
with 1. Therefore, comparison results of all words are mis-
match, i.e., the inputs of the priority encoder all are 0s. This
causes the priority encoder to output an invalid address. If
the address output is an valid address, the priority encoder is
faulty. Step 4 compares ��-�-1 with all words. Because the
data of word � for 0���� -2 are all 0s and the data of word
� -1 is ��-1-1, only the content of word � -1 is the same
as the compared data. Thus, the priority encoder receives
the input pattern the same as the third pattern shown in the
second row of Table 4. Then check if this Compare oper-
ation results that the priority encoder exports the expected
address � -1. Step 5 consists of three test operations, one
Compare and two Write operations, in which the Write op-
erations are executed in ascending address sequence. One
Write operation writes the data ��-�-1 into the word � and
one Compare operation compares ��-�-1 with all words. If
the matched address is not �, the priority encoder is faulty.
The other Write operation writes all-0 data into the same
word. These three operations are repeatedly performed at
each word until word � -2. When the test operations of
Step 5 are completed, the corresponding � -1 match signal
response patterns are the same as those shown from the the
fourth pattern to the last pattern in the second row of Ta-
ble 4. Consequently, the priority encoder of a CAM can
receive the test patterns shown in Table 4 when TPE is ap-
plied to the CAM.

Algorithm 1 Test for Priority Encoder Faults (TPE)
(1) FOR �=0 to � -1 DO�

IF(�=� -1)�
Write on word � with the binary value of ����-1;�

ELSE�
Write on word � with the binary value of 0.��

(2) Compare 0 with the bit�-1 of all words and the other bits
of all words are masked. Check if the matched address is 0.
(3) Compare 1 with the bit�-1 of all words and the other bits
of all words are masked. Check if the matched address is an
invalid address.
(4) Compare �

�-1-1 with all words and check if the matched
address is � -1.
(5) FOR �=0 to � -2 DO�

Write on word � with the binary value of ��-1-1.
Compare �

�-1-1 with all words and check if the
matched address is �.
Write on word � with the binary value of 0.��

For example, consider a 4�8-bit CAM under test. When
TPE is applied to the CAM, Step 1 initializes word 0, word
1, and word 2 to all-0 state and writes 127 (01111111)
into word 3. Thus, the state of the CAM is shown in
Fig. 6(a) when Step 1 is completed. Step 2 compares 0
with bit 7 of all words, i.e., bit 0 to bit 6 are masked.
As Fig. 6(b) shows, the Compare operation causes that
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Figure 6: Fault-free states of the 4�8-bit CAM under test
when TPE is executed.

�M�M�M�M��=�1111�. Similarly, Step 3 compares 1
with bit 7 as shown in Fig. 6(c) and the corresponding
match signal response is �M�M�M�M��=�0000�. Step
4 compares 127 with all words of the CAM as shown
in Fig. 6(d) and the corresponding match signal response
is �M�M�M�M��=�0001�. Finally, Step 5 first performs
a Write-127 operation on word 0, and the state of the
fault-free CAM is shown in Fig. 6(e). Then a Com-
pare operation compares 127 with all words as shown in
Fig. 6(f). This causes that the match signal response is
�M�M�M�M��=�1001�. Subsequently, a Write operation
writes all-0 data into word 0. Then the second word (word
1) is addressed and the data 127 is written into the addressed
word. Again, the Compare operation compares 127 with all
words as shown in Fig. 6(g). This causes that the match sig-
nal response is �M�M�M�M��=�0101�. Finally, the last
operation of Step 5 writes all-0 data into the word 1. The
same operations are repeatedly performed on word 2 and
the corresponding match signal responses �0011� as shown
in Fig. 6(h). Therefore, we see that the match signal re-
sponses shown in Table 4 all can be generated when the TPE

is executed on the CAM. That is, we conclude that TPE can
cover 100% SAFs of the ripple PCL of the priority encoder.

When TPE is executed, the encoder of the priority en-
coder also can receive its all possible functional patterns.
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Table 5 lists the corresponding output patterns of PCL when
the match signal patterns shown in Table 4 appear at inputs
of the PCL. As Table 5 shows, all-0 and walking-1 patterns
are included, which are all the possible functional patterns
of the encoder. Therefore, TPE can execute the functional
testing for the encoder. That is, it also can detect the SAFs
of the encoder of the priority encoder.

Table 5: Corresponding output patterns of PCL when the
patterns shown in Table 4 are applied to the PCL.

Output patterns of PCL
(���� � � � ����)
(1000� � �0000)
(0000� � �0000)
(0000� � �0001)
(1000� � �0000)
(0100� � �0000)
(0010� � �0000)

...
(0000� � �1000)
(0000� � �0100)
(0000� � �0010)

According to Algorithm 1, we see that Step 1 needs �
Write operation; Step 2, Step 3, and Step 4 need 3 Compare
operations; and Step 5 needs 2(� -1) Write operations and
� -1 Compare operations. Thus, TPE only requires 3� -2
Write operations and�+2 Compare operations to cover the
SAFs of the priority encoder for an ���-bit CAM.

4 Hit Signal Generator Testing

The Hit Signal Generator evaluates the match signals
with bit-wise OR operation. Thus, the output Hit signal
can be expressed as Hit=������ � � � �����, where � repre-
sents the OR operation. Therefore, the Hit Signal Generator
can be regarded as an � -input OR gate with a output—Hit.
��� test patterns are needed for detecting SAFs of the� -
input OR gate. The test patterns are �000� � �00, 100� � �00,
010� � �00, 001� � �00, � � �, 000� � �10, 000� � �01�. As Table 1
shows, these test patterns can be covered by Type-1 and
Type-4 patterns. Therefore, typical tests for CAM cell array
faults also can fully cover the SAFs of the Hit Signal Gener-
ator. But, if the tests for CAM cell array faults cause that the
match signal patterns belong to Type-2/Type-3 and Type-
4, most of the stuck-at-0 faults of the Hit Signal Genera-
tor cannot be detected. The reason can easily be shown by
observing the Type-2/Type-3 expected responses on match
signals.

5 Fault Coverage Analysis

In this section, we analyze the fault coverage of SAFs.
We use the Verifault of Verilog-XL Simulator to simulate
the fault coverage of SAFs of the PCL with ripple group
logic. Table 6 summarizes fault coverages of SAFs when

different tests are applied to the CAMs with �=8, 16, 32,
and 64. The second column shows the fault coverages of
SAFs in the ripple PCL when a test is used to test the CAM
and causes that the match signal patterns are the same as
Type-1 and Type-4 patterns shown in Table 2. For example,
the tests reported in [1–3] belong to this kind of test, called
Test A. Similarly, the third column summarizes the fault
coverages of SAFs in the ripple PCL when a test is applied
to the CAM and causes that the match signal patterns are
the same as Type-3 and Type-4 patterns shown in Table 2.
For example, the tests presented in [12] are this kind of test,
called Test B. As the table shows, conventional tests used
for CAM cell array faults cannot fully cover the SAFs in the
PCL of the priority encoder. Note that the fault coverages
in the second and third column are slightly decreased with
� . However, the proposed test TPE achieves 100% fault
coverage of SAFs regardless of the � .

Table 6: Comparison of fault coverage.
Type-1, Type-4 Type-3, Type-4 TPE

� � � 64.3% 91.4% 100%
� � �� 62% 90.7% 100%
� � �� 61% 90.3% 100%
� � �� 60.5% 90.2% 100%

Finally, we compare the SAF fault coverage of priority
encoder and hit signal generator when different types of
tests are applied. Table 7 summarizes the comparison re-
sults. As the table shows, the Test A (causing the CAM
has Type-1 and Type-4 match signal responses) has lower
SAF fault coverage for the priority encoder, since it only
can provide about 60% SAF fault coverage for the PCL of
the priority encoder. However, it can cover 100% SAFs of
hit signal generator as described in Sec. 4. The Test B (caus-
ing the CAM has Type-2/Type-3 and Type-4 match signal
responses) achieves medium fault coverage for the priority
encoder. But it cannot detect most of stuck-at-0 faults in
the hit signal generator as described in Sec. 4. According to
Table 7, we see that the combination of Test A and TPE can
achieve the best fault coverage for both the priority encoder
and the hit signal generator.

Table 7: Comparison of test algorithms.
Priority Encoder Hit Signal Generator
Fault Coverage Fault Coverage

Test A Low High
Test B Medium Low

Test A+TPE High High
Test B+TPE High Low

6 Conclusions

In this paper we have presented a test algorithm for test-
ing SAFs of the priority encoder of a CAM. For an ���-
bit CAM, the proposed test algorithm (TPE) only requires
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3� -2 Write operations and �+2 Compare operation to
cover 100% SAFs in the ripple prefix computation logic of
the priority encoder. It also provides the all possible func-
tional patterns for the encoder of the priority encoder, such
that the encoder is tested functionally as well. The T PE
also can be extended to test the SAFs of the carry lookahead
prefix computation logic of the priority encoder. Fault cov-
erage simulation results show that the SAF coverage of the
prefix computation logic is increased from 90.2% or 60.5%
to 100% for a CAM with 64 words. If TPE is combined with
the other tests for CAM cell array faults, high fault coverage
of the priority encoder can be achieved.
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