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Abstract

Fast addition plays an important role in advanced dig-
ital systems. Recently, reconfigurable adders have been
widely employed to achieve real time processing of media
signals. This paper presents a design-for-reconfigurability
(DFR) technique for carry lookahead adders (CLAs). The
DFR scheme only incurs a small amount of area cost and
delay penalty. Experimental results show that the delay
of an 64-bit reconfigurable CLA is only about 1.5ns with
the ������ technology. Compared with the original 64-
bit CLA, the area overhead and delay penalty for realizing
the DFR scheme in an 64-bit CLA are only about 4.7% and
2.7%, respectively.

1 Introduction

Fast addition is an essential arithmetic function for most
advanced digital systems. It heavily impacts the overall
performance of digital systems. Various adder structures
can be used to execute addition [1, 2], such as serial and
parallel structures. Most research works of adders are fo-
cused on the design of high-speed, low-area, or low-power
adders [3�5].Recently, design of reconÞgurable adders has
received signiÞcant attentions. ReconÞgurable adders usu-
ally are employed to achieve real-time processing of media
signals [6�8]. Moreover, future systems will shift toward
more programmable and reconÞgurable integrated system
on chips (SOCs) [9].Thus fast and reconÞgurable adders for
arithmetic computing are needed.

Several reconÞgurable adder design methodologies have
been reported in [10�13]. The PowerPC microprocessor
has a reconÞgurable ripple carry adder using additional bits
for partitioning, such that multiple smaller adders are ob-
tained [10]. For example, the Add/Compare block of the
microprocessor can execute separate 8-bit, 16-bit, and 32-
bit additions with a 36-bit reconÞgurable adder. The adder
has four 9-bit segments and each segment consists of 8-bit
operand data and an additional partition bit. Each partition
bit determines that the carry of the corresponding segment
addition is blocked or propagated. This partition scheme
is simple but it causes large delay penalty and area cost.
In [11], a partition scheme for Brent-Kung carry lookahead
adders is proposed. The partitioning is controlled by the
propagate signals. In [12], a reconÞgurable adder based on
an optimized carry-skip scheme is reported. The partition

approach does not incur signiÞcant area cost, power dissi-
pation, and delay. In [13], a reconÞgurable carry-skip adder
has been proposed, which minimizes the product of energy
and product. The proposed partition scheme enables an 64-
bit adder to execute one 64-bit (64), two 32-bit (32,32), four
16-bit (16,16,16,16), or eight 8-bit (8,8,8,8,8,8,8,8) addi-
tions.

This paper proposes a design-for-reconÞgurability
(DFR) scheme for carry-lookahead adders (CLAs). The
DFR scheme incurs only a small amount of area cost and
additional delay. Experimental results show that the speed
of an 64-bit reconÞgurable CLA is about 1.5ns based on the
������ technology. Compared with the 64-bit CLA with-
out reconÞgurability, the additional delay and area of the
reconÞgurable 64-bit CLA are only about 2.7% and 4.7%.

2 Carry-Lookahead Adder

Most of fast adders are based on being able to calculate
the carry propagation much faster without having to wait
for it to ripple through each bit of the adders. The carry-
lookahead technique is the most commonly used scheme
for accelerating carry propagation. A CLA calculates the
carry-out for a block of bits in parallel to, and separately
from, calculating the sum outputs of the block. Consider
the addition of two operands� � ������ � � � � ��� and� �
������ � � � � ���. The carry lookahead algorithm introduces
carry generate (	�) and propagate (
�) signals to reduce
the carry propagation delay. The two signals can be deÞned
as [1]
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� � �� � ��� (1)

As a result, the carry-out at bit position � can be expressed
as a recursive equation:
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It is clear that the carry propagation delay is still long if the
number of operands is large. Multilevel CLA networks can
be used to cope with this problem by breaking the entire
length of the operands into smaller blocks. That is, we may
divide the  stages into blocks and have a separate carry-
lookahead in each block. Then we may further reduce the
delay of carry propagation by providing a carry-lookahead
over blocks in addition to the internal lookahead within the
block. For example, if the block size is 4, the block generate
(	�

�) and block propagate (
 �

� ) signals of the Þrst block can
be obtained by
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Figure 1 depicts an example of 16-bit two-level CLA
with 4-bit blocks, with 	�
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� . Then the carries ��, ��, ��� and ��� can be generated
by
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As Fig. 1 shows, the two-level 16-bit CLA is comprised
of three components: propagate-generate (PG) unit, carry-
lookahead (CLA) unit, and sum generation unit (not shown
in the Þgure). The sum generation unit can generate the sum
with the expression: �� � �� � �� � ��. Figure 2 depicts an
example of gate-level implementation of the level-1 CLA
unit. The level-2 CLA unit can be implemented with the
similar approach.
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Figure 1: A 16-bit two-level CLA.

3 Design-for-Reconfigurability Technique

In this section we present a design-for-reconÞgurability
(DFR) technique for CLAs. We Þrst use the 16-bit two-
level CLA with 4-bit blocks shown in Fig. 1 as an example
to explain the proposed DFR technique. Assume that two
conÞgurations: one 16-bit addition (16) and two 8-bit addi-
tions (8,8) are needed. Also, let � �� be the carry input of the
8-bit adder on the left. Therefore, the following conditions
must be satisÞed when the conÞguration of two 8-bit adders
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Figure 2: The level-1 CLA unit.
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Subsequently, we will show that the principle of the pro-
posed DFR technique. Let � be the partition control signal,
and � � � or � � � denote that the 16-bit CLA is not par-
titioned or partitioned, respectively. According to Eq. (1),
we have the following expression


�	� � 	�� (6)

By replacing 	� with 
�	�, we can rewrite the 	�

� as fol-
lows:
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Now we modify the 	�
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� into two reconÞgurable
block propagate (�
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� ) and block generate (�	�

�) signals.
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Therefore, the ��, ���, and ��� can be expressed as follows
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When � � �, the three equations are the same as those
shown in Eq. (4). However, when � � �, the three equa-
tions are as follows
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The three equations are the same as those expressed in
Eq.(5). Thus the 16-bit CLA can be partitioned into two 8-
bit CLAs when � � �. To realize the reconÞgurable 16-bit
CLA, we need one modiÞed CLA block which can gener-
ate �	�

� and �
 �

� . Figure 3 shows an example of gate-level
implementation of the modiÞed CLA. As the Þgure shows,
if � � �, 
 �

� � � and 	�

� � ��� . Therefore, the 16-bit
two-level CLA shown in Fig. 1 can be modiÞed as a re-
conÞgurable 16-bit CLA with two possible conÞgurations
by replacing the second level-1 CLA unit with the modiÞed
CLA unit.
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Figure 3: ModiÞed level-1 4-bit CLA unit.

Another example is illustrated to show that the DFR
scheme can be extended to CLAs with wider widths. Con-
sider a 32-bit CLA with 4-bit blocks. A reconÞgurable 32-
bit CLA with three partitions, one 32-bit CLA (32), two
16-bit CLAs (16,16) and four 8-bit CLAs (8,8,8,8), can be
obtained by replacing the second, fourth, and sixth level-
1 CLA units with modiÞed CLAs. Figure 4 shows the
CLA network of the reconÞgurable 32-bit CLA, where the
shaded boxes denote the modiÞed CLAs as shown in Fig. 3.
The partitioning control signals are � and �. Table 1 lists
the various partitions with respect to the state of the two
control signals. When (�,�)=(0,0), the CLA is conÞgured
into four 8-bit CLAs with carry inputs ��, ���, ����, and ����.
When (�,�)=(0,1), the CLA is partitioned into two 16-bit
CLAs with carry inputs �� and ����. When (�,�)=(1,1), the
CLA is unchanged.

Table 1: Adder partitions with respect to control signals.
� � Partitions
0 0 Four 8-bit adders
0 1 Two 16-bit adders
1 1 One 32-bit adder

Subsequently, we want to show the reconÞgurable 32-
bit CLA can work as described above. As Fig. 4 shows,
the 
 �

� , 	�

� , 
 ��

� , and 	��

� are generated with the Boolean

equations similar to those in Eq. (3). Also, the carry outputs
of level-1 and level-2 CLAs are calculated with the Boolean
equations similar to those in Eq. (4). The carry outputs � ��
and ��� of the level-3 CLA are as follows
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We Þrst show that the conÞguration (8,8,8,8) is correct.
When (�, �)=(0,0), 	�
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 � �. Therefore, we can obtain the follow-
ing expressions:
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By replacing 	��

� , 
 ��
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� , and 
 ��

� into the ��� and ���,
we obtain the following expressions:
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Also, �� � ��� can be shown the same as that for the 16-bit
reconÞgurable CLA. Therefore, we conclude that the con-
Þguration (8,8,8,8) is correct according to Eqs. (7) and (8).

Finally, we show that the conÞguration (16,16) can work
correctly. When (�,�)=(1,0), 	�

� � ���� and 
 �

� � �. We
can obtain the following expressions:
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By replacing the 	��

� , 
 ��

� , 	��

� , and 
 ��

� of ��� with the
values described in Eq. (9), we obtain the ��� and ��� as
follows:
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As the equations shown above, we see that the 32-bit CLA
can correctly be partitioned into two 16-bit CLAs with � �
� and � � �.

4 Analysis and Comparison

We have demonstrated the proposed reconÞgurable de-
sign methodology on an 64-bit CLA with synthesizable
Verilog RTL. Note that the UMC ������ CMOS standard
cell library is used to simulate the following results. Simu-
lation results show that the speed of an 64-bit CLA without
reconÞgurability is about 1.46ns. Also, the area is about
17052���. On the other hand, the speed of the proposed
64-bit reconÞgurable CLA is about 1.5ns when the 64-bit
addition is executed. The area of the reconÞgurable adder
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Figure 4: A 32-bit reconÞgurable CLA with 4-bit blocks.

is about 17861���. Therefore, area overhead and delay
penalty for the design-for-reconÞgurability scheme are only
about 4.7% and 2.7%, respectively.

Finally, we compared the proposed reconÞgurable adder
with the reconÞgurable adders reported in the previous
works. Table 2 summarizes the comparison results of the
proposed 64-bit reconÞgurable CLA and the adders re-
ported in [11�13]. In the table, the BK and CSK denote
the Brent-Kung CLA and carry skip adder, respectively.
Data reported in the second column to fourth column are
referred in [13], where AMS 0.35�� is assumed. As the
table shows, the delay of the proposed 64-bit reconÞgurable
CLA is about 1.5ns. Although the proposed CLA is simu-
lated with 0.18�� technology, the delay is only about 2.9ns
by scaling the original delay with a factor of ���	�����. On
the other hand, the proposed reconÞgurable CLA dissipates
only about 60pJ. Again, the energy of the proposed recon-
Þgurable CLA is only about 117pJ by scaling the original
energy with a factor of ���	�����. Compared with the pre-
vious works, the energy dissipation is lower than that of the
other adders.

Table 2: Comparison with previous works.
64-bit addition [11] [12] [13] Proposed
Adder structure BK CSK CSK CLA
ReconÞgurable Y Y Y Y

Technology .35�� .35�� .35�� .18��
Supply Voltage 3.3V 3.3V 3.3V 1.8V

Area (���) 74242 46404 64335 17861
Delay (ns) 4.9ns 6.5ns 4.9ns 1.5ns
Energy (pJ) 226 148 181 60

5 Conclusions

This paper has presented a design methodology of re-
conÞgurable CLAs. A DFR scheme has proposed to di-
vide a large CLA into multiple separate small ones. The
DFR scheme only incurs a small amount of delay and area
penalty. Experimental results show that the delay of an 64-
bit reconÞgurable CLA is only about 1.5ns based on UMC
������ technology. Also, the 64-bit reconÞgurable CLA
has very low product of energy and delay. Furthermore,
the delay penalty and area overhead of the DFR scheme are
only about 2.7% and 4.7%, respectively.
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