
Jin-Fu Li
Department of Electrical Engineering

National Central University
Jungli, Taiwan

Chapter 3Chapter 3
Machine Instructions & Machine Instructions &

Programs Programs

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 2

Numbers, Arithmetic Operations, and Characters
Memory Locations and Addresses
Memory Operation
Instructions and Instruction Sequencing
Addressing Modes
Assembly Language
Basic Input/Output Operations
Stacks and Queues
Subroutines
Linked List
Encoding of Machine Instructions

Outline

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 3

Content Coverage

Main Memory System

Input/Output System

Arithmetic
and

Logic Unit

Operational
Registers

Program
Counter

Control Unit

Data/InstructionAddress

Central Processing Unit (CPU)

Cache
memory

Instruction
Sets

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 4

Number Representation
Consider an n-bit vector , where =0 or 1 for

The vector B can represent unsigned integer values V in
the range 0 to , where

We need to represent positive and negative numbers for
most applications
Three systems are used for representing such numbers

Sign-and-magnitude
1’s-complement
2’s-complement

011 bbbB n K−=
10 −≤≤ ni

ib

12 −n

0
0

1
1

1
1 222)(×+×++×= −
− bbbBV n

n L

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 5

Number Systems
In sign-and-magnitude system

Negative values are represented by changing the most significant
bit from 0 to 1

In 1’s-complement system
Negative values are obtained by complementing each bit of the
corresponding positive number
The operation of forming the 1’s-complement of a given number
is equivalent to subtracting that number from 2n-1

In 2’s-complement system
The operation of forming the 2’s-complement of a given number
is done by subtracting that number from 2n

The 2’s-complement of a number is obtained by adding 1
to 1’s-complement of that number

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 6

An Example of Number Representations

0123 bbbb

0 1 1 1
0 1 1 0
0 1 0 1
0 1 0 0
0 0 1 1
0 0 1 0
0 0 0 1
0 0 0 0
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

+7
+6
+5
+4
+3
+2
+1
+0
-0
-1
-2
-3
-4
-5
-6
-7

sign and
magnitude 1’s-complement 2’s-complement

+7
+6
+5
+4
+3
+2
+1
+0
-7
-6
-5
-4
-3
-2
-1
-0

+7
+6
+5
+4
+3
+2
+1
+0
-8
-7
-6
-5
-4
-3
-2
-1

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 7

2’s-Complement System
+7+(-3)

+713 (1101) steps

+4

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 8

Addition of Numbers in 2’s Complement

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 9

Sign Extension of 2’s Complement
Sign extension

To represent a signed number in 2’s complement form using a
larger number of bits, repeat the sign bit as many times as
needed to the left

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 10

Memory Locations
A memory consists of cells, each of which can store a bit
of binary information (0 or 1)
Because a single bit represents a very small amount of
information

Bits are seldom handled individually
The memory usually is organized so that a group of n bits
can be stored or retrieved in a single, basic operation

Each group of n bits is referred to as a word of information, and n
is called the word length
A unit of 8 bits is called a byte

Modern computers have word lengths that typically
range from 16 to 64 bits

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 11

Memory Addresses
Accessing the memory to store or retrieve a single item of
information, either a word or a byte, requires distinct
names or addresses for each item location
It is customary to use numbers from 0 to 2k-1 as the
address space of successive locations in the memory

K denotes address
2k-1 denotes address space of memory locations

For example, a 24-bit address generates an address space
of 224 (16,777,216) locations
Terminology

210: 1K (kilo)
220: 1M (mega)
230: 1G (giga)
240: 1T (tera)

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 12

Memory Words

Word0

Word1

Wordw-1

n bits

A signed integer

b31 b30 b1 b0

32 bits

8 bits8 bits 8 bits 8 bits

ASCII
character

Four characters

Memory words

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 13

Big-Endian & Little-Endian Assignments

Big-endian assignment

Byte address

0 1 2 3
4 5 6 7

2k-4 2k-3 2k-2 2k-12k-4

0
4

Word
address Byte address

3 2 1 0
7 6 5 4

2k-1 2k-2 2k-3 2k-42k-4

0
4

Word
address

Little-endian assignment

Byte addresses can be assigned across words in
two ways

Big-endian and little-endian

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 14

Random access memories must have two basic operations
Write: writes a data into the specified location
Read: reads the data stored in the specified location

In machine language program, the two basic operations
usually are called

Store: write operation
Load: read operation

The Load operation transfers a copy of the contents of a
specific memory location to the processor. The memory
contents remain unchanged
The Store operation transfers an item of information from
the processor to a specific memory location, destroying
the former contents of that location

Memory Operation

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 15

A computer must have instructions capable of performing
four types of operations

Data transfers between the memory and the processor registers
Arithmetic and logic operations on data
Program sequencing and control
I/O transfers

Register transfer notation
The contents of a location are denoted by placing square brackets
around the name of the location
For example, R1 [LOC] means that the contents of memory
location LOC are transferred into processor register R1
As another example, R3 [R1]+[R2] means that adds the contents
of registers R1 and R2, and then places their sum into register R3

Instructions

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 16

Types of instructions
Zero-address instruction
One-address instruction
Two-address instruction
Three-address instruction

Zero-address instruction
For example, store operands in a structure called a pushdown
stack

One-address instruction
Instruction form: Operation Destination
For example, Add A: add the contents of memory location A to
the contents of the accumulator register and place the sum back
into the accumulator
As another example, Load A: copies the contents of memory
location A into the accumulator

Assembly Language Notation

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 17

Two-address instruction
Instruction form: Operation Source, Destination
For example, Add A, B: performs the operation B [A]+[B].
When the sum is calculated, the result is sent to the memory and
stored in location B
As another example, Move B, C: performs the operation C [B],
leaving the contents of location B unchanged

Three-address instruction
Instruction form: Operation Source1, Source2, Destination
For example, Add A, B, C: adds A and B, and the result is sent to
the memory and stored in location C
If k bits are needed to specify the memory address of each
operand, the encoded form of the above instruction must contain
3k bits for addressing purposes in addition to the bits needed to
denote the Add operation

Assembly Language Notation

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 18

How a program is executed
The processor contains a register called the program counter (PC),
which holds the address of the instruction to be executed next. To
begin executing a program, the address of its first instruction
must be placed into the PC, then the processor control circuits use
the information in the PC to fetch and execute instruction, one at
a time, in the order of increasing address

Basic instruction cycle

Instruction Execution

START Fetch Instruction Execute Instruction HALT

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 19

A Program for C [A]+[B]

Move A, R0
Add B, R0
Move R0, C

3-instruction
program
segment

Data for
the program

Address

i
i+4
i+8

A

B

C

R0

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 20

Straight-Line Sequencing

Move NUM1, R0
Add NUM2, R0
Add NUM3, R0

i
i+4
i+8

i+4n-4

SUM
NUM1

Add NUMn, R0
Move R0, SUMi+4n

NUM2

NUMn

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 21

Branching

Move N, R1
Clear R0

SUM
N

Branch>0 LOOP
Move R0, SUM

NUM1

NUMn

Determine address of
“Next” number and add
“Next” number to R0

Decrement R1

n

Program
loop

LOOP

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 22

Condition Codes
The processor keeps track of information about the results
of various operations for use by subsequent conditional
branch instructions. This is accomplished by recoding
required information in individual bits, often called
condition code flags
Four commonly used flags are

N (negative): set to 1 if the results is negative; otherwise, cleared
to 0
Z (zero): set to 1 if the result is 0; otherwise, cleared to 0
V (overflow): set to 1 if arithmetic overflow occurs; otherwise,
cleared to 0
C (carry): set to 1 if a carry-out results from the operation;
otherwise, cleared to 0

N and Z flags caused by an arithmetic or a logic operation,
V and C flags caused by an arithmetic operation

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 23

Addressing Modes
Programmers use data structures to represent the data
used in computations. These include lists, linked lists,
array, queues, and so on
A high-level language enables the programmer to use
constants, local and global variables, pointers, and arrays
When translating a high-level language program into
assembly language, the compiler must be able to
implement these constructs using the facilities in the
instruction set of the computer
The different ways in which the location of an operand is
specified in an instruction are referred to as addressing
modes

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 24

Generic Addressing Modes

Immediate
Register
Absolute (Direct)
Indirect

Index
Base with index
Base with index and offset
Relative
Autoincrement
Autodecrement

Name Assembler syntax Addressing function

#Value
Ri
LOC
(Ri)
(LOC)
X(Ri)
(Ri, Rj)
X(Ri, Rj)
X(PC)
(Ri)+
-(Ri)

Operand=Value
EA=Ri
EA=LOC
EA=[Ri]
EA=[LOC]
EA=[Ri]+X
EA=[Ri]+[Rj]
EA=[Ri]+[Rj]+X
EA=[PC]+X
EA=[Ri]; Increment Ri
Decrement Ri; EA=[Ri]

EA: effective address
Value: a signed number

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 25

Register, Absolute and Immediate Modes
Register mode: the operand is the contents of a processor
register; the name (address) of the register is given in the
instruction

For example, Add Ri, Rj (adds the contents of Ri and Rj and the
result is stored in Rj)

Absolute mode: the operand is in a memory location; the
address of this location is given explicitly in the
instruction. (In some assembly languages, this mode is
called Direct)

For example, Move LOC, R2 (moves the content of the memory
with address LOC to the register R2)
The Absolute mode can represent global variables in a program.
For example, a declaration such as Integer A, B;

Immediate mode: the operand is given explicitly in the
instruction

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 26

Indirection and Pointers
Indirect mode: the effective address of the operand is the
contents of a register or memory location whose address
appears in the instruction
Indirection is denoted by placing the name of the register
or the memory address given in the instruction in
parentheses
The register or memory location that contains the address
of an operand is called a pointer

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 27

Two Types of Indirect Addressing

Add (R1), R0

Operand

Main
Memory

B

BR1 Register

Through a general-purpose register Through a memory location

Add (A), R0

BA

OperandB

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 28

Register Indirect Addressing Diagram

Register Address ROpcode

Instruction

Memory

OperandPointer to Operand

Registers

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 29

Using Indirect Addressing in a Program

LOOP

Address Contents

Move N, R1
Move #NUM1, R2
Clear R0
Add (R2), R0
Add #4, R2
Decrement R1
Branch>0 LOOP
Move R0, SUM

Initialization

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 30

Indexing and Arrays
Index mode: the effective address of the operand is
generated by adding a constant value to the contents of a
register

The register used may be either a special register provided for this
purpose, or, more commonly, it may be any one of a set of general-
purpose registers in the processor. It is referred to as an index
register
The index mode is useful in dealing with lists and arrays
We denote the Index mode symbolically as X(Ri), where X denotes
the constant value contained in the instruction and Ri is the name
of the register involved. The effective address of the operand is
given by EA=X+(Ri). The contents of the index register are not
changed in the process of generating the effective address

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 31

Indexed Addressing

Add 20(R1), R2

1000

Operand1020

Offset=20

1000 R1

Offset is given as a constant

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 32

Indexed Addressing

Add 1000(R1), R2

1000

Operand1020

Offset=20

20 R1

Offset is in the index register

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 33

An Example for Indexed Addressing

nN
LIST Student ID

Test 1
Test 2
Test 3

Student ID
Test 1
Test 2
Test 3

LIST+4
LIST+8
LIST+12
LIST+16

LOOP

Move #LIST, R0
Clear R1
Clear R2
Clear R3
Move N, R4
Add 4(R0), R1
Add 8(R0), R2
Add 12(R0), R3
Add #16, R0
Decrement R4
Branch>0 LOOP
Move R1, SUM1
Move R2, SUM2
Move R3, SUM3

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 34

Variations of Indexed Addressing Mode
A second register may be used to contain the offset X, in
which case we can write the Index mode as (Ri,Rj)

The effective address is the sum of the contents of registers Ri and
Rj
The second register is usually called the base register
This mode implements a two-dimensional array

Another version of the Index mode use two registers plus
a constant, which can be denoted as X(Ri,Rj)

The effective address is the sum of the constant X and the contents
of registers Ri and Rj
This mode implements a three-dimensional array

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 35

Additional Modes
Autoincrement mode: the effective address of the operand
is the contents of a register specified in the instruction.
After accessing the operand, the contents of this register
are automatically incremented to point to the next item in
a list

The Autoincrement mode is denoted as (Ri)+
Autodecrement mode: the contents of a register specified
in the instruction are first automatically decremented and
are then used as the effective address of the operand

The Autodecrement mode is denoted as –(Ri)

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 36

An Example of Autoincrement Addressing

LOOP

Move N, R1
Move #NUM1, R2
Clear R0
Add (R2)+, R0
Decrement R1
Branch>0 LOOP
Move R0, SUM

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 37

Assembly Language
A complete set of symbolic names and rules for their use
constitute a programming language, generally referred to
as an assembly language
Programs written in an assembly language can be
automatically translated into a sequence of machine
instructions by a program called an assembler
When the assembler program is executed, it reads the user
program, analyzes it, and then generates the desired
machine language program
The user program in its original alphanumeric text format
is called a source program, and the assembled machine
language program is called an object program

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 38

Assembler Directives
In addition to providing a mechanism for representing
instructions in a program, the assembly language allows
the programmer to specify other information needed to
translate the source program into the object program
Suppose that the name SUM is used to represent the value
200. The fact may be conveyed to the assembler program
through a statement such as

SUM EQU 200
This statement does not denote an instruction that will be
executed when the object program is run; it will not even
appear in the object program

Such statements, called assembler directives (or commands)

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 39

Assembler

Assembler directives SUM EQU 200
ORIGIN 204

N DATAWORD 100
NUM1 RESERVE 400

ORIGIN 100
Statements that START MOVE N, R1
generate MOVE #NUM1, R2
machine CLR R0
instructions LOOP ADD (R2), R0

ADD #4, R2
DEC R1
BGTZ LOOP
MOVE R0, SUM

Assembler directives RETURN
END START

Move N, R1100
Move #NUM1, R2

Clear R0

Add (R2) , R0

Add #4, R2

Decrement R1

Branch>0 LOOP

Move R0, SUM

104
108

112
116

120

124

128

132

204

200

100N

SUM

Memory arrangement Assembly language representation

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 40

Number Notation
When dealing with numerical values, most assemblers
allow numerical values to be specified in different ways
For example, consider the number 93, which is represented
by the 8-bit binary number 01011101. If the value is to be
used as immediate operand,

It can be given as a decimal number, as in the instruction ADD #93,
R1
It can be given as a binary number, as in the instruction ADD
#%01011101,R1 (a binary number is identified by a prefix symbol
such as percent sign)
It also can be given as a hexadecimal number, as in the instruction
ADD #$5D, R1 (a hexadecimal number is identified by a prefix
symbol such as dollar sign)

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 41

1001

Basic Input/Output Operations
Bus connection for processor, keyboard, and display

Processor DATAIN

Display

SIN

Keyboard

DATAOUT

SOUT

DATAIN, DATAOUT: buffer registers
SIN, SOUT: status control flags

0 1

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 42

Wait Loop
In order to perform I/O transfers, we need machine
instructions that can check the state of the status flags and
transfer data between the processor and I/O device
Wait loop for Read operation

READWAIT Branch to READWAIT if SIN=0
Input from DATAIN to R1

Wait loop for Write operation
WRITEWAIT Branch to WRITEWAIT if SOUT=0

Output from R1 to DATAOUT
We assume that the initial state of SIN is 0 and the initial
state of SOUT is 1

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 43

Memory-Mapped I/O
Many computers use an arrangement called memory-
mapped I/O in which some memory address values are
used to refer to peripheral device buffer registers, such as
DATAIN and DATAOUT
Thus no special instructions are needed to access the
contents of these registers; data can be transferred between
these registers and the processor using instructions that we
have discussed, such as Move, Load, or Store
Also, the status flags SIN and SOUT can be handled by
including them in device status registers, one for each of
the two devices

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 44

Read and Write Programs
Assume that bit b3 in registers INSTATUS and
OUTSTATUS corresponds to SIN and SOUT, respectively
Read Loop

READWAIT Testbit #3, INSTATUS
Branch=0 READWAIT
MoveByte DATAIN, R1

Write Loop
WRITEWAIT Testbit #3, OUTSTATUS

Branch=0 WRITEWAIT
MoveByte R1, DATAOUT

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 45

Stacks and Queues
A stack is a list of data elements, usually words or bytes,
with the accessing restriction that elements can be added
or removed at one end of the list only

It is also called a last-in-first-out (LIFO) stack
A stack has two basic operations: push and pop
The terms push and pop are used to describe placing a new item
on the stack and removing the top item from the stack,
respectively.

Another useful data structure that is similar to the stack is
called a queue

Data are stored in and retrieved from a queue on a first-in-first-
out (FIFO) basis
Two pointers are needed to keep track of the two ends of the
queue

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 46

A Stack of Words in the Memory

-28SP

Stack pointer register

17
739

43

Stack

BOTTOM

Current top element

Bottom element

Low address

High address

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 47

Push and Pop Operations
Assume that a byte-addressable memory with 32-bit words
The push operation can be implemented as

Subtract #4, SP
Move NEWITEM, (SP)

The pop operation can be implemented as
Move (SP), ITEM
Add #4, SP

If the processor has the Autoincrement and Autodecrement
addressing modes, then the push operation can be
implemented by the single instruction

Move NEWITEM, -(SP)
And the pop operation can be implemented as

Move (SP)+, ITEM

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 48

Examples

19
-28
17

43

19

SP

NEWITEM

SP

-28
17

43

-28

SP

ITEM

SP

Push operation Pop operation

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 49

Checking for Empty and Full Errors
When a stack is used in a program, it is usually allocated
a fixed amount of space in the memory

We must avoid pushing an item onto the stack when the stack
has reached in its maximum size, i.e., the stack is full
On the other hand, we must avoid popping an item off the stack
when the stack has reached in its minimum size, i.e., the stack is
empty

Routine for a safe pop or a safe push operation
Compare src, dst
Perform [dst]-[src]
Sets the condition code flags according to the result

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 50

Subroutines
In a given program, it is often necessary to perform a particular
subtask many times on different data values. Such a subtask is
called a subroutine.

The location where the calling program resumes execution is
the location pointed by the updated PC while the Call
instruction is being executed. Hence the contents of the PC
must be saved by the Call instruction to enable correct return
to the calling program

Memory
location Calling program

Memory
location Subroutine SUB

...
200 Call SUB
204 next instruction

...

1000 first instruction
...

Return

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 51

Subroutine Linkage
The way in which a computer makes it possible to call
and return from subroutines is referred to as its
subroutine linkage method
Subroutine linkage using a link register

204PC

1000

Link 204

Call Return

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 52

Subroutine Nesting
A common programming practice, called subroutine
nesting, is to have one subroutine call another
Subroutine nesting call be carried out to any depth.
Eventually, the last subroutine called completes its
computations and returns to the subroutine that called it
The return address needed for this first returns is the last
one generated in the nested call sequence. That is, return
addresses are generated and used in a last-in-first-out
order
Many processors do this by using a stack pointer and the
stack pointer points to a stack called the processor stack

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 53

B+4
A+4

Example of Subroutine Nesting

...
...

...
...

Main Program SUB 1 SUB 2 SUB 3

A+4

A
B

B+4
A+4

C+4

C

A+4
A+4
A+4

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 54

Example of Subroutine Nesting

jal abc

jr $ra

abc
Save

Restore

PC
Prepare
to continue

Prepare
to call

main

jal xyz

jr $ra

xyz

Procedure
abc

Procedure
xyz

[Source: B. Parhami, UCSB]

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 55

Parameter Passing
When calling a subroutine, a program must provide to
the subroutine the parameters, that is, the operands or
their addresses, to be used in the computation. Later, the
subroutine returns other parameters, in this case, the
result of computation
The exchange of information between a calling program
and a subroutine is referred to as parameter passing
Parameter passing approaches

The parameters may be placed in registers or in memory
locations, where they can be accessed by the subroutine
The parameters may be placed on the processor stack used for
saving the return address

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 56

Passing Parameters with Registers

Calling program
Move N, R1 R1 serves as a counter
Move #NUM1, R2 R2 points to the list
Call LISTADD Call subroutine
Move R0, SUM Save result

Subroutine

...

Clear R0 Initialize sum to 0
Add (R2)+, R0 Add entry from list
Decrement R1
Branch>0 LOOP
Return Return to calling program

LISTADD
LOOP

passed by value
passing by reference

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 57

Passing Parameters with Stack

Assume top of stack is at level 1 below.
Move #NUM1, -(SP) Push parameters onto stack
Move N, -(SP)
Call LISTADD Call subroutine

(top of stack at level 2)
Move 4(SP), SUM Save result
Add #8, SP Restore top of stack

(top of stack at level 1) ...
MoveMultiple R0-R2, -(SP) Save registers

(top of stack at level 3)
Move 16(SP), R1 Initialize counter to N.
Move 20(SP), R2 Initialize pointer to the list
Clear R0 Initialize sum to 0
Add (R2)+, R0 Add entry from list
Decrement R1
Branch>0 LOOP
Move R0, 20(SP) Put result on the stack
MoveMultiple (SP)+, R0-R2 Restore registers
Return Return to calling program

LISTADD

LOOP

[R2]
[R1]
[R0]

Return address
N

NUM1

Level 3

Level 2

Level 1

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 58

Stack Frame

Saved [R1]
Saved [R0]
localvar3

Return address

localvar2
localvar1
saved [FP]

param1
param2
param3
param4

SP (Stack pointer)

FP (Frame pointer) Stack frame

8(FP)
12(FP)
16(FP)
20(FP)

-4(FP)
-8(FP)

-12(FP)

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 59

Shift Instructions
Logical shifts

Arithmetic shifts

Logic shift left

LShiftL #2, R0
0 1 1 1 0 0 1 1

1 1 0 0 1 1 0 0

0

1

Before:

After:

R0 0C

Carry flag

1 0 0 1 1 0 1 0

1 1 1 0 0 1 1 0

0

1

Before:

After:

R0 C

Sign bitshift right

AShiftR #2, R0

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 60

Rotate Instructions
Rotate left without carry

Rotate left with carry

0 1 1 1 0 0 1 1

1 1 0 0 1 1 0 1

0

1

Before:

After:

R0C

RotateL #2, R0

0 1 1 1 0 0 1 1

1 1 0 0 1 1 0 0

0

1

Before:

After:

R0C

RotateLC #2, R0

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 61

Linked List

Record 1 Record 2 Record k 0

Link address

Head Tail

Record 1 Record 2

New
Record

Linking structure

Inserting a new record

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 62

A List of Student Test Scores

27243 10402320

28106 12001040

28370 28801200

40632 12802720

47871 01280

Link fieldKey field Data fieldAddress

Head

Tail

First
record

Second
record

Last

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 63

Encoding of Machine Instructions
To be executed in a processor, an instruction must be encoded
in a compact binary pattern. Such encoded instructions are
properly referred to as machine instructions. The instructions
that use symbolic names and acronyms are called assembly
language instructions, which are converted into the machine
instructions using assembler program
For a given instruction, the type of operation that is to be
performed and the type of operands used may be specified
using an encoded binary pattern referred to as the OP code
In addition to the OP code, the instruction has to specify the
source and destination registers, and addressing mode, etc,

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 64

Examples
Assume that 8 bits are allocated for OP code, and 4 bits are
needed to identify each register, and 6 bits are needed to
specify an addressing mode
The instruction Move 24(R0), R5

Require 16 bits to denote the OP code and the two registers
Require 6 bits to choose the addressing mode
Only 10 bits are left to give the index value

The instruction LshiftR #2, R0
Require 18 bits to specify the OP code, the addressing modes, and the
register
This limits the size of the immediate operand to what is expressible in 14
bits

In the two examples, the instructions can be encoded in a 32-bit word.

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 65

Encoding Instructions into 32-bit Words

OP code Source Destination Other info

8 7 7 10

OP code Source Destination Other info

One-word instruction

Two-word instruction

OP code Ri Rk Other infoRj

Three-operand instruction

Memory address/Immediate operand

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 66

Encoding Instructions into 32-bit Words
But, what happens if we want to specify a memory
operand using the Absolute addressing mode?
The instruction Move R2, LOC

Require 18 bits to denote the OP code, the addressing modes, and
the register
The leaves 14 bits to express the address that corresponds to LOC,
which is clearly insufficient

If we want to be able to give a complete 32-bit address in
the instruction, an instruction must have two words
If we want to handle this type of instructions: Move
LOC1, LOC2

An instruction must have three words

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 67

CISC & RISC
Using multiple words, we can implement quite complex
instructions, closely resembling operations in high-level
programming language
The term complex instruction set computer (CISC) has been
used to refer to processors that use instruction sets of this
type
The restriction that an instruction must occupy only one
word has led to a style of computers that have become
known as reduced instruction set computer (RISC)

