
Jin-Fu Li
Department of Electrical Engineering

National Central University
Jungli, Taiwan

Chapter 5Chapter 5
Input/Output Organization Input/Output Organization

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 2

Accessing I/O Devices
Interrupts
Direct Memory Access
Buses
Interface Circuits
Standard I/O Interfaces

Outline

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 3

Content Coverage

Main Memory System

Input/Output System

Arithmetic
and

Logic Unit

Operational
Registers

Program
Counter

Control Unit

Data/InstructionAddress

Central Processing Unit (CPU)

Cache
memory

Instruction
Sets

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 4

Accessing I/O Devices
Single-bus structure

The bus enables all the devices connected to it to
exchange information
Typically, the bus consists of three sets of lines used to
carry address, data, and control signals
Each I/O device is assigned a unique set of addresses

Processor Memory

I/O device 1 I/O device n

Bus

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 5

I/O Mapping
Memory mapped I/O

Devices and memory share an address space
I/O looks just like memory read/write
No special commands for I/O

Large selection of memory access commands available

Isolated I/O
Separate address spaces
Need I/O or memory select lines
Special commands for I/O

Limited set

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 6

Memory-Mapped I/O
When I/O devices and the memory share the same
address space, the arrangement is called memory-
mapped I/O
With memory-mapped I/O, any machine instruction that
can access memory can be used to transfer data to or from
an I/O device
Most computer systems use memory-mapped I/O.
Some processors have special IN and OUT instructions to
perform I/O transfers

When building a computer system based on these processors, the
designer has the option of connecting I/O devices to use the
special I/O address space or simply incorporating them as part of
the memory address space

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 7

I/O Interface for an Input Device
The address decoder, the data and status registers,
and the control circuitry required to coordinate
I/O transfers constitute the device’s interface
circuit

Control
circuits

Address
decoder

Data and status
registers

Bus Data lines

Control lines

Input device

Address lines

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 8

I/O Techniques
Programmed
Interrupt driven
Direct Memory Access (DMA)

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 9

Program-Controlled I/O
Consider a simple example of I/O operations
involving a keyboard and a display device in a
computer system. The four registers shown
below are used in the data transfer operations

The two flags KIRQ and DIRQ in STATUS register are
used in conjunction with interrupts

DATAIN

DATAOUT

STATUS SINSOUTKIRQDIRQ

CONTROL KENDEN

7 6 5 4 3 2 1 0

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 10

An Example

Move #LINE, R0 Initialize memory pointer
WAITK TestBit #0,STATUS Test SIN

Branch=0 WAITK Wait for character to be entered
Move DATAIN,R1 Read character

WAITD TestBit #1,STATUS Test SOUT
Branch=0 WAITD Wait for display to become ready
Move R1,DATAOUT Send character to display
Move R1,(R0)+ Store character and advance pointer
Compare #$0D,R1 Check if Carriage Return
Branch=0 WAITK If not, get another character
Move #$0A,DATAOUT Otherwise, send Line Feed
Call PROCESS Call a subroutine to process the

input line

A program that reads one line from the keyboard,
stores it in memory buffer, and echoes it back to the
display

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 11

Program-Controlled I/O
The example described above illustrates program-
controlled I/O, in which the processor repeatedly
checks a status flag to achieve the required
synchronization between the processor and an input
or output device. We say that the processor polls the
devices
There are two other commonly used mechanisms for
implementing I/O operations: interrupts and direct
memory access

Interrupts: synchronization is achieved by having the I/O
device send a special signal over the bus whenever it is
ready for a data transfer operation
Direct memory access: it involves having the device
interface transfer data directly to or from the memory

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 12

Interrupts
To avoid the processor being not performing any
useful computation, a hardware signal called an
interrupt to the processor can do it. At least one
of the bus control lines, called an interrupt-request
line, is usually dedicated for this purpose
An interrupt-service routine usually is needed and
is executed when an interrupt request is issued
On the other hand, the processor must inform the
device that its request has been recognized so
that it may remove its interrupt-request signal.
An interrupt-acknowledge signal serves this
function

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 13

Example

Program 1
COMPUTE routine

Program 2
PRINT routine

Interrupt occurs
here

1

2

i

i+1

M

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 14

Interrupt-Service Routine & Subroutine
Treatment of an interrupt-service routine is very
similar to that of a subroutine
An important departure from the similarity should
be noted

A subroutine performs a function required by the program
from which it is called.
The interrupt-service routine may not have anything in
common with the program being executed at the time the
interrupt request is received. In fact, the two programs
often belong to different users

Before executing the interrupt-service routine, any
information that may be altered during the execution
of that routine must be saved. This information must
be restored before the interrupted program is
resumed

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 15

Interrupt Latency
The information that needs to be saved and restored
typically includes the condition code flags and the
contents of any registers used by both the interrupted
program and the interrupt-service routine
Saving registers also increases the delay between the
time an interrupt request is received and the start of
execution of the interrupt-service routine. The delay
is called interrupt latency
Typically, the processor saves only the contents of
the program counter and the processor status register.
Any additional information that needs to be saved
must be saved by program instruction at the
beginning of the interrupt-service routine and
restored at the end of the routine

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 16

Interrupt Hardware
An equivalent circuit for an open-drain bus used
to implement a common interrupt-request line

INTR

INTR1 INTR2 INTRn

Processor

INTR

R

Vdd

INTR=INTR1+INTR2+…+INTRn

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 17

Handling Multiple Devices
Handling multiple devices gives rise to a number of
questions:

How can the processor recognize the device requesting an
interrupt?
Given that different devices are likely to require different
interrupt-service routines, how can the processor obtain the
starting address of the appropriate routine in each case?
Should a device be allowed to interrupt the processor while
another interrupt is being serviced?
How should two or more simultaneous interrupt request be
handled?

The information needed to determine whether a
device is requesting an interrupt is available in its
status register

When a device raises an interrupt request, it sets to 1 one of
the bits in its status register, which we will call the IRQ bit

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 18

Identify the Interrupting Device
The simplest way to identify the interrupting device
is to have the interrupt-service routine poll all the
I/O devices connected to the bus

The polling scheme is easy to implement. Its main
disadvantage is the time spent interrogating all the devices

A device requesting an interrupt may identify itself
directly to the processor. Then, the processor can
immediately start executing the corresponding
interrupt-service routine. This is called vectored
interrupts
An interrupt request from a high-priority device
should be accepted while the processor is servicing
another request from a lower-priority device

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 19

Interrupt Priority
The processor’s priority is usually encoded in a few
bits of the processor status word. It can be changed
by program instructions that write into the program
status register (PS). These are privileged instructions,
which can be executed only while the processor is
running in the supervisor mode
The processor is in the supervisor mode only when
executing operating system routines. It switches to
the user mode before beginning to execute
application program
An attempt to execute a privileged instruction while
in the user mode leads to a special type of interrupt
called a privilege exception

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 20

Implementation of Interrupt Priority
An example of the implementation of a multiple-
priority scheme

Pr
oc

es
so

r

Device 1 Device 2 Device p

INTA1

INTR1

Priority arbitration
circuit

INTRp

INTAp

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 21

Simultaneous Requests
Consider the problem of simultaneous arrivals of
interrupt requests from two or more devices. The
processor must have some means of deciding
which request to service first
Interrupt priority scheme with daisy chain

Device 1 Device 2 Device n
INTA

INTR

Pr
oc

es
so

r

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 22

Priority Group
Combination of the interrupt priority scheme
with daisy chain and with individual interrupt-
request and interrupt-acknowledge lines

Pr
oc

es
so

r

Priority arbitration
circuit

Device Device DeviceINTA1

INTR1

Device Device DeviceINTAp

INTRp

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 23

Direct Memory Access
To transfer large blocks of data at high speed, a
special control unit may be provided between an
external device and the main memory, without
continuous intervention by the processor. This
approach is called direct memory access (DMA)
DMA transfers are performed by a control circuit that
is part of the I/O device interface. We refer to this
circuit as a DMA controller.
Since it has to transfer blocks of data, the DMA
controller must increment the memory address for
successive words and keep track of the number of
transfers

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 24

DMA Controller
Although a DMA controller can transfer data
without intervention by the processor, its
operation must be under the control of a program
executed by the processor
An example

31 30 1 0

IRQ
IE

Status and control

Starting address

Word count

Done
R/W

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 25

DMA Controller in a Computer System

Processor
Main

memory

Disk/DMA
controller

System bus

DMA
controller

Printer Keyboard

Disk Disk Network
Interface

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 26

Memory Access Priority
Memory accesses by the processor and the DMA
controllers are interwoven. Request by DMA devices
for using the bus are always given higher priority
than processor requests.
Among different DMA devices, top priority is given
to high-speed peripherals such as a disk, a high-
speed network interface, etc.
Since the processor originates most memory access
cycles, the DMA controller can be said to “steal”
memory cycles from the processor. Hence, this
interweaving technique is usually called cycle stealing
The DMA controller may transfer a block of data
without interruption. This is called block/burst mode

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 27

Bus Arbitration
A conflict may arise if both the processor and a DMA
controller or two DMA controllers try to use the bus
at the same time to access the main memory. To
resolve this problem, an arbitration procedure on bus
is needed
The device that is allowed to initiate data transfer on
the bus at any given time is called the bus master.
When the current master relinquishes control of the
bus, another device can acquire this status
Bus arbitration is the process by which the next
device to become the bus master take into account
the needs of various devices by establishing a
priority system for gaining access to the bus

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 28

Bus Arbitration
There are two approaches to bus arbitration

Centralized and distributed
In centralized arbitration, a single bus arbiter
performs the required arbitration
In distributed arbitration, all devices participate
in the selection of the next bus master

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 29

Centralized Arbitration

DMA
Controller 1BG1

BBSY

Pr
oc

es
so

r

DMA
Controller 2

BR

BG2

BG1

BG2

BBSY

BR

Processor DMA controller 2 Processor

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 30

Distributed Arbitration

ARB3

ARB2

ARB1

ARB0

Start-Arbitration

Vcc

O.C.

Interface circuit for device A

0 1 0 1 0 1 1 1

Assume that IDs of A and B are 5 and 6.
Also, the code seen by both devices is 0111

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 31

Buses
A bus protocol is the set of rules that govern the
behavior of various devices connected to the bus
as to when to place information on the bus, assert
control signals, and so on
In a synchronous bus, all devices derive timing
information from a common clock line. Equal
spaced pulses on this line define equal time
intervals
In the simplest form of a synchronous bus, each
of these intervals constitutes a bus cycle during
which one data transfer can take place

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 32

A Synchronous Bus Example

t2t1
t0

Bus clock

Address and
command

Data

Bus Cycle

Timing of an input transfer on a synchronous bus

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 33

A Synchronous Bus Example
Detail timing diagram

t2t1

tAM

Bus clock

Address and
command

Data

t1

tAS

tDM

tDS

Data

Address and
command

Seen by slave

Seen by master

Slave send the
requested data

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 34

Input Transfer Using Multiple Clock Cycles

Address

Command

Clock

Data

Slave-ready

1 2 3 4

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 35

Asynchronous Bus
An alternative scheme for controlling data
transfers on the bus is based on the use of a
handshake between the master and slave
Address

and command

Master-ready

Data

Slave-ready

Bus cycle

t0 t1 t2
t3 t4 t5

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 36

Asynchronous Bus
Handshake control of data transfer during an
output operation

Address
and command

Master-ready

Data

Slave-ready

Bus cycle

t0 t1 t2
t3 t4 t5

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 37

Discussion
The choice of a particular design involves trade-offs
among factors such as

Simplicity of the device interface
Ability to accommodate device interfaces that introduce different
amounts of delay
Total time required for bus transfer
Ability to detect errors results from addressing a nonexistent
device or from an interface malfunction

Asynchronous bus
The handshake process eliminates the need for synchronization
of the sender and receiver clock, thus simplifying timing design

Synchronous bus
Clock circuitry must be designed carefully to ensure proper
synchronization, and delays must be kept within strict bounds

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 38

Interface Circuits
Keyboard to processor connection

When a key is pressed, the Valid signal changes from 0
o 1, causing the ASCII code to be loaded into DATAIN
and SIN to be set to 1
The status flag SIN is cleared to 0 when the processor
reads the contents of the DATAIN register

Processor
Encoder

and
Debouncing

circuit

DATAIN

SIN

Input
Interface

Keyboard
switches

Valid

Data

Data

Address

Master-ready

Slave-ready

R/W

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 39

Input Interface Circuit

Address
decoder

Status
flag

Q7 D7

Q0 D0

Slave-
ready

D7

D0

SIN

Keyboard
data

Valid

A31

A1

A0

Read-
data

Read-
status

1

Master-
ready

DATAIN

R/W

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 40

Circuit for the Status Flag Block

Q D

Q

SIN

Read-data

Master-ready

1

Valid

Clear

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 41

Printer to Processor Connection
The interface contains a data register, DATAOUT,
and a status flag, SOUT

The SOUT flag is set to 1 when the printer is ready to accept
another character, and it is cleared to 0 when a new
character is loaded into DATAOUT by the processor
When the printer is ready to accept a character, it asserts its
idle signal

Processor

DATAOUT

SOUT

Output
Interface

Data

Address

Master-ready

Slave-ready

R/W Printer

Idle

Data

Valid

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 42

Output Interface Circuit

Address
decoder

Handshake
control

D7 Q7

D0 Q0

Slave-
ready

D7

D0

SOUT

Printer
data

Idle

A31

A1

A0

Load-
data

Read-
status

1

Master-
ready

DATAOUT

R/W

D1 D1 Q1

Valid

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 43

A General 8-Bit Parallel Interface

DATAIN

DATAOUT

Data
Direction
Register

D7

D0

P7

P0

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 44

Output Interface Circuit for a Bus Protocol

Address
decoder

Handshake
control

D7 Q7

D0 Q0

D7

D0

SOUT

Printer
data

Idle

A31

A1

A0

Load-
data

Read-
status

R/W

D1 D1 Q1

Valid

Clock

My-
address Timing

Logic

Go

Respond
Go=1

Idle

My-address

DATAOUT

Slave-
ready

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 45

Timing Diagram for an Output Operation

Clock

Address

Data

Go

Slave-ready

R/W

1 2 3
Time

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 46

Serial Port
A serial port is used to connect the processor to
I/O devices that require transmission of data one
bit at a time
The key feature of an interface circuit for a serial
port is that it is capable of communicating in a
bit-serial fashion on the device side and in a bit-
parallel fashion on the bus side
The transformation between the parallel and
serial formats is achieved with shift registers that
have parallel access capability

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 47

A Serial Interface

Input shift register

DATAIN

DATAOUT

Output shift register

Serial input

Serial output

D7

D0

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 48

Standard I/O Interfaces
The processor bus is the bus defined by the signals on the
processor chip itself. Devices that require a very high
speed connection to the processor, such as the main
memory, may be connected directly to this bus
The motherboard usually provides another bus that can
support more devices.
The two buses are interconnected by a circuit, which we
called a bridge, that translates the signals and protocols of
one bus into those of the other
It is impossible to define a uniform standards for the
processor bus. The structure of this bus is closely tied to
the architecture of the processor
The expansion bus is not subject to these limitations, and
therefore it can use a standardized signaling structure

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 49

Peripheral Component Interconnect Bus
Use of a PCI bus in a computer system

Host

Main
memory

Disk

PCI Bus

Printer
Ethernet
interface

PCI
bridge

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 50

PCI Bus
The bus support three independent address spaces:
memory, I/O, and configuration.
The I/O address space is intended for use with
processors, such Pentium, that have a separate I/O
address space.
However, the system designer may choose to use
memory-mapped I/O even when a separate I/O
address space is available
The configuration space is intended to give the PCI
its plug-and-play capability.

A 4-bit command that accompanies the address identifies
which of the three spaces is being used in a given data
transfer operation

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 51

Data Transfer Signals on the PCI Bus

Name

CLK

FRAME#

AD

C/BE#

IRDY#, TRDY#

DEVSEL#

IDSEL#

A 33-MHz or 66MHz clock

Sent by the initiator to indicate the duration of a transaction

32 address/data lines, which may be optionally increased to 64

4 command/byte-enable lines (8 for 64-bit bus)

Initiator-ready and Target-ready signals

A response from the device indicating that it has recognized its
Address and is ready for a data transfer transaction

Initialization Device Select

Function

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 52

A Read Operation on the PCI Bus

CLK

1 2 3 4 5 6 7

Frame#

AD Address #1 #2 #3 #4

C/BE#

IRDY#

TRDY#

DEVSEL#

Cmnd Byte enable

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 53

Universal Serial Bus (USB)
The USB has been designed to meet several key
objectives

Provide a simple, low-cost, and easy to use
interconnection system that overcomes the difficulties
due to the limited number of I/O ports available on a
computer
Accommodate a wide range of data transfer
characteristics for I/O devices, including telephone and
Internet connections
Enhance user convenience through a “plug-and-play”
mode of operation

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 54

USB Structure
A serial transmission format has been chosen for the USB
because a serial bus satisfies the low-cost and flexibility
requirements
Clock and data information are encoded together and
transmitted as a single signal

Hence, there are no limitations on clock frequency or distance
arising from data skew

To accommodate a large number of devices that can be
added or removed at any time, the USB has the tree
structure

Each node of the tree has a device called a hub, which acts as an
intermediate control point between the host and the I/O device
At the root of the tree, a root hub connects the entire tree to the
host computer

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 55

USB Tree Structure

Root
hub

Host Computer

Hub Hub

Hub

I/O
device

I/O
device

I/O
device

I/O
device

I/O
device

I/O
device

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 56

USB Tree Structure
The tree structure enables many devices to be connected
while using only simple point-to-point serial links
Each hub has a number of ports where devices may be
connected, including other hubs
In normal operation, a hub copies a message that it
receives from its upstream connection to all its
downstream ports

As a result, a message sent by the host computer is broadcast to all
I/O devices, but only the addressed device will respond to that
message

A message sent from an I/O device is sent only upstream
towards the root of the tree and is not seen by other
devices

Hence, USB enables the host to communicate with the I/O devices,
but it does not enable these devices to communicate with each
other

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 57

USB Protocols
All information transferred over the USB is
organized in packets, where a packet consists of
one or more bytes of information
The information transferred on the USB can be
divided into two broad categories: control and
data

Control packets perform such tasks as addressing a
device to initiate data transfer, acknowledging that data
have been received correctly, or indicating an error
Data packets carry information that is delivered to a
device. For example, input and output data are
transferred inside data packets

