
Jin-Fu Li
Department of Electrical Engineering

National Central University
Jungli, Taiwan

Chapter 7Chapter 7
Arithmetic LogicArithmetic Logic

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 2

Addition and Subtraction of Signed Numbers
Multiplication of Positive Numbers

Outline

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 3

Content Coverage

Main Memory System

Input/Output System

Arithmetic
and

Logic Unit

Operational
Registers

Program
Counter

Control Unit

Data/InstructionAddress

Central Processing Unit (CPU)

Cache
memory

Instruction
Sets

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 4

An Example of Binary Addition

0 0 0 1 0 1 1 0 (44)
1 0 1 1 0 0 1 0 (356)
1 1 0 0 1 0 0 0 (400)

1111

0

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 5

1-bit Full Adder
Adder Truth Table

C A B A.B(G) A+B(P) A B SUM CARRY
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0
0
0
1
0
0
0
1

0
1
1
1
0
1
1
1

0
1
1
0
0
1
1
0

0
1
1
0
1
0
0
1

0
0
0
1
0
1
1
1

Generate Signal G(A.B): occurs when a carry output (CARRY)
is internally generated within the adder .

Propagate Signal P(A+B): when it is true, the carry in signal C is passed
to the carry output (CARRY) when C is true

A B

CCARRY
G

P

SUM

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 6

Logic for a 1-bit Full Adder

SUM=A B C

CARRY=AB+AC+BC

A B C

SUM

Single-bit schematic of SUM Single-bit schematic of CARRY

A
B

B
C

A
C

CARRY

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 7

An N-bit Ripple Carry Adder

FA

x0y0

s0

FA

x1y1

s1

FA

xn-1yn-1

sn-1

c0c1cn-1
cn

Disadvantage: long delay time

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 8

Binary Addition-Subtraction
Y-X=Y+X’+1

FA

x0

y0

s0

FA

x1

y1

s1

FA

xn-1

yn-1

sn-1

c0

c1cn-1
cn

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 9

Carry-LookAhead Addition

C4

Ci+1=AiBi+(Ai+Bi)Ci=Gi+PiCi

C1=G0+P0C0

C2=G1+P1G0+P1P0C0

C3=G2+P2G1+P2P1G0+P2P1P0C0

C4=G3+P3G2+P3P2G1+P3P2P1G0+P3P2P1P0C0

CLG1 CLG2 CLG3 CLG4

SG1 SG2 SG3 SG4

S0 S1 S2 S3

C0

C1 C2 C3

P0 P0-P1 P0-P2 P0-P3G0 G0-G1 G0-G2 G0-G3

4-bit CLA

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 10

Multi-Level Carry LookAhead Addition

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 11

Multi-Level Carry LookAhead Addition

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 12

Multiplication of Positive Numbers

a

a b axb
0
0
0
1

0 0
0 1
1 0
1 1

b
axb

Bit-level multiplier

a3

Multiplication of two 4-bit words
a2 a1 a0

b3 b2 b1 b0

a0b0a1b0a2b0a3b0

a0b1a1b1a2b1a3b1

a0b2a1b2a2b2a3b2

a0b3a1b3a2b3a3b3

p3 p2 p1 p0p7 p6 p5 p4

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 13

Array Multiplication

∑
−

=

=
1

0
2

n

i

i
iXX ∑

−

=

=
1

0
2

n

j

j
jYY

∑ ∑
−

=

−

=

⋅=×=
1

0

1

0
22

n

i

n

j

j
j

i
i YXYXP

Consider two unsigned binary integers X and Y

∑

∑∑
−+

=

−

=

+
−

=

=

=

1

0

1

0

1

0

2

2)(

nn

k

k
k

n

j

ji
ji

n

i

P

YX

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 14

Array Multiplication
X3 X2 X1 X0

Y0

Y1

Y2

Y3

P0

P1

P2

P3

P4P5P6P7

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 15

Register-Based Multiplication

an-1 a0C

n-bit
adder

qn-1 q0

mn-1 m0

MUX

0
0

Control
sequencer

Add/Noadd
control

Shift right

Register A
(initially 0)

Multiplier Q

Multiplicand M

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 16

Example of Register-Based Multiplication

n-bit
adder

MUX

0
0

Control
sequencer

Add/Noadd
control

Shift right

Register A
(initially 0)

Multiplier Q

Multiplicand M1 1 0 1

0 0 0 0 1 0 1 10 0 1 1 0 1 1 0 10 1 1 0 1 1 0 1 10 1 0 0 0 1 1 1 10 0 0 1 1 1 1 0 11 1 0 0 1 1 1 1 00 1 0 0 1 1 1 1 00 0 1 0 0 1 1 1 10 0 0 0 1 1 1 1 11

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 17

Integer Division

27413
21

26
14
13
1

1000100101101
1101

10101

10000
1101

1110
1101

1

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 18

Register-Based Division

an-1 a0
an

n+1-bit
adder

qn-1 q0

mn-1 m0

Control
sequencer

Add/Subtract

Shift left

Register A
(initially 0)

Dividend Q

Divisor M

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 19

A Restoring-Division Example
Initially 0 0 0 0 0 1 0 0 0

0 0 0 1 1
Shift 0 0 0 0 1 0 0 0

Subtract 1 1 1 0 1
Set q0 1 1 1 1 0

Restore 1 1
0 0 0 0 1 0 0 0 0

Shift 0 0 0 1 0 0 0 0
Subtract 1 1 1 0 1

Set q0 1 1 1 1 1
Restore 1 1

0 0 0 1 0 0 0 0 0
Shift 0 0 1 0 0 0 0 0

Subtract 1 1 1 0 1
Set q0 0 0 0 0 1

Shift 0 0 0 1 0 0 0 1
Subtract 1 1 1 0 1

Set q0 1 1 1 1 1
Restore 1 1

0 0 0 1 0 0 0 1 0

0 0 0 1

First cycle

Second cycle

Third cycle

Fourth cycle

Remainder Quotient

100011
10

11
10

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 20

A Nonrestoring-Division Example
Initially 0 0 0 0 0 1 0 0 0

0 0 0 1 1
Shift 0 0 0 0 1 0 0 0

Subtract 1 1 1 0 1
Set q0 1 1 1 1 0 0 0 0 0

Shift 1 1 1 0 0 0 0 0
Add 0 0 0 1 1

Shift 1 1 1 1 0 0 0 0

Shift 0 0 0 1 0 0 0 1
Subtract 1 1 1 0 1

First cycle

Second cycle

Third cycle

Fourth cycle

Remainder

Quotient

100011
10

11
10

Set q0 1 1 1 1 1 0 0 0 0

Add 0 0 0 1 1
Set q0 0 0 0 0 1 0 0 0 1

Set q0 1 1 1 1 1 0 0 1 0

Add 0 0 0 1 1
0 0 0 1 0

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU

Floating Point (a brief look)
We need a way to represent

numbers with fractions, e.g., 3.1416
very small numbers, e.g., .000000001

very large numbers, e.g., 3.15576 ’ 109

Representation:
sign, exponent, significand: (–1)sign ’ significand ’ 2exponent

more bits for significand gives more accuracy

more bits for exponent increases range

IEEE 754 floating point standard:
single precision: 8 bit exponent, 23 bit significand
double precision: 11 bit exponent, 52 bit significand

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU

IEEE 754 Floating-Point Standard
Leading “1” bit of significand is implicit

Exponent is “biased” to make sorting easier
all 0s is smallest exponent all 1s is largest
bias of 127 for single precision and 1023 for double precision
summary: (–1)sign ’ (1+significand) ’ 2exponent – bias

Example:

decimal: -.75 = - (½ + ¼)
binary: -.11 = -1.1 x 2-1

floating point: exponent = 126 = 01111110

IEEE single precision: 10111111010000000000000000000000

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 23

Floating Point Addition

Still normalized?

4. Round the significand to the appropriate
number of bits

YesOverflow or
underflow?

Start

No

Yes

Done

1. Compare the exponents of the two numbers.
Shift the smaller number to the right until its
exponent would match the larger exponent

2. Add the significands

3. Normalize the sum, either shifting right and
incrementing the exponent or shifting left

and decrementing the exponent

No Exception

Small ALU

Exponent
difference

Control

ExponentSign Fraction

Big ALU

ExponentSign Fraction

0 1 0 1 0 1

Shift right

0 1 0 1

Increment or
decrement

Shift left or right

Rounding hardware

ExponentSign Fraction

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU

Floating Point Complexities
Operations are somewhat more complicated
In addition to overflow we can have “underflow”
Accuracy can be a big problem

IEEE 754 keeps two extra bits, guard and round
For example, add 2.56x100 to 2.34x102 2.37x102 (with guard and
round bits) or 2.36 (without guard and round bits)

four rounding modes
positive divided by zero yields “infinity”
zero divide by zero yields “not a number”
other complexities

