Chapter 7 Arithmetic Logic

Jin-Fu Li

Department of Electrical Engineering National Central University Jungli, Taiwan

Outline

Addition and Subtraction of Signed Numbers
 Multiplication of Positive Numbers

Content Coverage

Advanced Reliable Systems (ARES) Lab.

An Example of Binary Addition

Advanced Reliable Systems (ARES) Lab.

1-bit Full Adder

	Adder Truth Table								
	С	А	В	A.B(<mark>G</mark>)	A+B(P)	A⊕B	SUM	CARRY	
	0	0	0	0	0	0	0	0	
	0	0	1	0	1	1	1	0	
	0	1	0	0	1	1	1	0	
	0	1	1	1	1	0	0	1	
	1	0	0	0	0	0	1	0	
	1	0	1	0	1	1	0	1	
	1	1	0	0	1	1	0	1	
	1	1	1	1	1	0	1	1	
enerate	e Sign	al G(/	A.B):	occurs wh	en a carry o y generateo	output (C d within th	ARRY) ne addei	CARRY— r .	
ropaga	te Sig	nal P	(A+B)	: when it i	s true, the	carry in s	ignal C i	s passed	
				to the ca	rry output ((CARRY)	when C	is true	

Logic for a 1-bit Full Adder

SUM=A \oplus B \oplus C CARRY=AB+AC+BC

Single-bit schematic of SUM

Single-bit schematic of CARRY

An N-bit Ripple Carry Adder

Disadvantage: long delay time

Binary Addition-Subtraction

Y-X=Y+X'+1

Carry-LookAhead Addition

 $C_{i+1} = A_i B_i + (A_i + B_i) C_i = G_i + P_i C_i$

 $C_1 = G_0 + P_0 C_0$

 $C_2 = G_1 + P_1 G_0 + P_1 P_0 C_0$

 $C_3 = G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 C_0$

 $C_4 = G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0 + P_3 P_2 P_1 P_0 C_0$

Advanced Reliable Systems (ARES) Lab.

Multi-Level Carry LookAhead Addition

$$c_{1} = G_{0} + P_{0}c_{0}$$

$$c_{2} = G_{1} + G_{0}P_{1} + P_{1}P_{0}c_{0}$$

$$\vdots$$

$$c_{n} = G_{n} + P_{n}G_{n-1} + P_{n}P_{n-1}G_{n-2} + \cdots + P_{n}P_{n-1} \dots P_{0}c_{0}.$$

$$\downarrow$$

$$G_{0}^{*} = G_{3} + G_{2}P_{3} + G_{1}P_{2}P_{3} + G_{0}P_{1}P_{2}P_{3},$$

$$P_{0}^{*} = P_{0}P_{1}P_{2}P_{3}.$$

$$\downarrow$$

$$c_{4} = G_{0}^{*} + c_{0}P_{0}^{*},$$

$$c_{8} = G_{1}^{*} + G_{0}^{*}P_{1}^{*} + c_{0}P_{0}^{*}P_{1}^{*},$$

$$c_{12} = G_{2}^{*} + G_{1}^{*}P_{2}^{*} + G_{0}^{*}P_{1}^{*}P_{2}^{*} + c_{0}P_{0}^{*}P_{1}^{*}P_{2}^{*},$$

$$c_{16} = G_{3}^{*} + G_{2}^{*}P_{3}^{*} + G_{1}^{*}P_{2}^{*}P_{3}^{*}.$$

Advanced Reliable Systems (ARES) Lab.

Multi-Level Carry LookAhead Addition

Multiplication of Positive Numbers

Bit-level multiplier

a b	axb
0 0	0
0 1	0
10	0
1 1	1

Multiplication of two 4-bit words

Advanced Reliable Systems (ARES) Lab.

Array Multiplication

Consider two unsigned binary integers X and Y

$$X = \sum_{i=0}^{n-1} X_i 2^i \qquad Y = \sum_{j=0}^{n-1} Y_j 2^j$$

$$P = X \times Y = \sum_{i=0}^{n-1} X_i 2^i \cdot \sum_{j=0}^{n-1} Y_j 2^j$$
$$= \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} (X_i Y_j) 2^{i+j}$$
$$= \sum_{k=0}^{n+n-1} P_k 2^k$$

Advanced Reliable Systems (ARES) Lab.

Array Multiplication

Advanced Reliable Systems (ARES) Lab.

Register-Based Multiplication

Advanced Reliable Systems (ARES) Lab.

Example of Register-Based Multiplication

Advanced Reliable Systems (ARES) Lab.

Integer Division

Register-Based Division

Advanced Reliable Systems (ARES) Lab.

A Restoring-Division Example

Advanced Reliable Systems (ARES) Lab.

A Nonrestoring-Division Example

Floating Point (a brief look)

> We need a way to represent

- numbers with fractions, e.g., 3.1416
- very small numbers, e.g., .000000001
- ◆ very large numbers, e.g., 3.15576 ' 10⁹

> Representation:

- ◆ sign, exponent, significand: $(-1)^{sign}$ ' significand ' $2^{exponent}$
- more bits for significand gives more accuracy
- more bits for exponent increases range

> IEEE 754 floating point standard:

- single precision: 8 bit exponent, 23 bit significand
- ◆ double precision: 11 bit exponent, 52 bit significand

IEEE 754 Floating-Point Standard

> Leading "1" bit of significand is implicit

> Exponent is "biased" to make sorting easier

- all 0s is smallest exponent all 1s is largest
- ◆ bias of 127 for single precision and 1023 for double precision
- summary: $(-1)^{\text{sign}}$ ' (1+significand) ' $2^{\text{exponent}-\text{bias}}$

> Example:

- decimal: $-.75 = -(\frac{1}{2} + \frac{1}{4})$
- ◆ binary: -.11 = -1.1 x 2⁻¹
- floating point: exponent = 126 = 01111110

Advanced Reliable Systems (ARES) Lab.

Floating Point Addition

Advanced Reliable Systems (ARES) Lab.

Floating Point Complexities

- > Operations are somewhat more complicated
- In addition to overflow we can have "underflow"
- > Accuracy can be a big problem
 - IEEE 754 keeps two extra bits, guard and round
 - □ For example, add 2.56x100 to 2.34x102→2.37x102 (with guard and round bits) or 2.36 (without guard and round bits)
 - four rounding modes
 - positive divided by zero yields "infinity"
 - zero divide by zero yields "not a number"
 - other complexities