
Jin-Fu Li
Department of Electrical Engineering

National Central University
Jungli, Taiwan

Chapter 8Chapter 8
Basic Processing UnitBasic Processing Unit

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 2

Fundamental Concepts
Hardwired Control
Microprogrammed Control

Outline

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 3

Content Coverage

Main Memory System

Input/Output System

Arithmetic
and

Logic Unit

Operational
Registers

Program
Counter

Control Unit

Data/InstructionAddress

Central Processing Unit (CPU)

Cache
memory

Instruction
Sets

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 4

Instruction Execution
To execute an instruction, the processor has to
perform the following three steps:

Step 1: fetch the contents of the memory location pointed by the
PC. The contents of this location are interpreted as an
instruction to be executed. Hence, they are loaded into the IR.
Symbolically, this can be written as IR [[PC]]
Step 2: assuming that the memory is byte addressable,
increment the contents of the PC by 4, that is, PC [PC]+4
Step 3: carry out the actions specified by the instruction in the
IR

Step 1 and Step 2 fetch phase
Step 3 decode phase, execution phase, and/or write
phase

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 5

Single-Bus Organization of the Datapath

PC

MAR

MDR

Y

Z

Constant 4

A B
ALU

TEMP

R(n-1)

R0

IR

Instruction
decoder and
control logic

Control signals

ALU control
lines

Select

Data
lines

Memory bus

Address
lines

Carry-in

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 6

Instruction Execution
An instruction can be executed by performing
one or more of the following operations in some
specified sequence

Transfer a word of data from one processor register to
another or to the ALU
Perform an arithmetic or a logic operation and store
the result in a processor register
Fetch the contents of a given memory location and
load them into a processor register
Store a word of data from a processor register into a
given memory location

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 7

Register Transfers

Ri

Y

Z

Constant 4

A BALU

Select

Riin

Riout
Yin

Zin

Zout

Rj

Rjin

Rjout

1

1

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 8

Input and Output Gating for 1-bit Register

Bus

Clock

Riin

Riout

D D
0

1

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 9

Arithmetic Operation

R1

Y

Z

Constant 4

A BALU

Select

R1in

R1out
Yin

Zin

Zout

R2

R2in

R2out

1
1

1 0 1

1

1

1

R3

R3in

R3out

1

Add R3, R1, R2

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 10

Fetching a Word from Memory

MDR

Internal processor busMemory data bus

MDRoutE MDRout

MDRinE MDRin

Move (R1), R2

1. R1out, MARin, Read
2. MDRinE, WMFC
3. MDRout, R2in
WMFC: is the control
signal that causes the
processor’s control
circuitry to wait for the
arrival of the MFC signal.

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 11

Execution of a Complete Instruction
Ass (R3), R1: adds the contents of a memory

location pointed to by R3 to register R1.
Executing this instruction requires the following
actions:

Fetch the instruction
Fetch the first operand (the contents of the memory
location pointed to by R3)
Perform the addition
Load the result into R1

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 12

Instruction fetch

1 PCout, MARin, Read, Select4 Add, Zin
2 Zout, PCin, Yin, WMFC
3 MDRout, IRin
4 R3out, MARin, Read
5 R1out, Yin, WMFC
6 MDRout, SelectY, Add, Zin
7 Zout, R1in, End

Control Sequence

Ri

Y

Z

Constant 4

A BALU

Select

Riin

Riout
Yin

Zin

Zout

Rj

Rjin

Rjout

Step Action

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 13

Control
To execute instructions, the processor must have
some means of generating the control signals
needed in the proper sequence. Computer
designers use a wide variety of techniques to
solve this problem.
The approaches used fall into one of two
categories: hardwired control and
microprogrammed control

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 14

Control Unit Organization

Control step counter

Decoder/encoder

Clock
CLK

IR

External inputs

Conditional
codes

Control signals

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 15

Finite State Machine for Control
P C W rite

P C W rite C on d
Io rD

M em to R eg
P C S ou rce
A L U O p
A L U S rcB
A L U S rcA
R e gW rite
R e gD s t

N S 3
N S 2
N S 1
N S 0

O
p5

O
p4

O
p3

O
p2

O
p1

O
p0

S
3

S
2

S
1

S
0

S ta te re g is te r

IR W rite

M em R e ad
M em W rite

Ins tru ct io n re g is te r
o pco de fie ld

O u tp uts

C on tro l log ic

Inp u ts

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 16

PLA Implementation
Op5

Op4

Op3

Op2

Op1

Op0

S3

S2

S1

S0

IorD

IRWrite

MemRead
MemWrite

PCWrite
PCWriteCond

MemtoReg
PCSource1

ALUOp1

ALUSrcB0
ALUSrcA
RegWrite
RegDst
NS3
NS2
NS1
NS0

ALUSrcB1
ALUOp0

PCSource0

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU

ROM = "Read Only Memory"
values of memory locations are fixed ahead of time

A ROM can be used to implement a truth table
if the address is m-bits, we can address 2m entries in the
ROM.
our outputs are the bits of data that the address points
to.

m is the "height", and n is the "width"

ROM Implementation

m n

0 0 0 0 0 1 1
0 0 1 1 1 0 0
0 1 0 1 1 0 0
0 1 1 1 0 0 0
1 0 0 0 0 0 0
1 0 1 0 0 0 1
1 1 0 0 1 1 0
1 1 1 0 1 1 1

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 18

Microprogrammed Control
Microprogrammed control

Control signals are generated by a program similar to machine
language programs

PCWrite
PCWriteCond
IorD

MemtoReg
PCSource
ALUOp
ALUSrcB
ALUSrcA
RegWrite

AddrCtl

Outputs

Microcode memory

IRWrite

MemRead
MemWrite

RegDst

Control unit

Input

Microprogram counter

Address select logic

Adder

1

Instruction register
opcode field

BWrite

Datapath

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU

Microinstruction format
Field name Value Signals active Comment

Add ALUOp = 00 Cause the ALU to add.
ALU control Subt ALUOp = 01 Cause the ALU to subtract; this implements the compare for

branches.
Func code ALUOp = 10 Use the instruction's function code to determine ALU control.

SRC1 PC ALUSrcA = 0 Use the PC as the first ALU input.
A ALUSrcA = 1 Register A is the first ALU input.
B ALUSrcB = 00 Register B is the second ALU input.

SRC2 4 ALUSrcB = 01 Use 4 as the second ALU input.
Extend ALUSrcB = 10 Use output of the sign extension unit as the second ALU input.
Extshft ALUSrcB = 11 Use the output of the shift-by-two unit as the second ALU input.
Read Read two registers using the rs and rt fields of the IR as the register

numbers and putting the data into registers A and B.
Write ALU RegWrite, Write a register using the rd field of the IR as the register number and

Register RegDst = 1, the contents of the ALUOut as the data.
control MemtoReg = 0

Write MDR RegWrite, Write a register using the rt field of the IR as the register number and
RegDst = 0, the contents of the MDR as the data.
MemtoReg = 1

Read PC MemRead, Read memory using the PC as address; write result into IR (and
lorD = 0 the MDR).

Memory Read ALU MemRead, Read memory using the ALUOut as address; write result into MDR.
lorD = 1

Write ALU MemWrite, Write memory using the ALUOut as address, contents of B as the
lorD = 1 data.

ALU PCSource = 00 Write the output of the ALU into the PC.
PCWrite

PC write control ALUOut-cond PCSource = 01, If the Zero output of the ALU is active, write the PC with the contents
PCWriteCond of the register ALUOut.

jump address PCSource = 10, Write the PC with the jump address from the instruction.
PCWrite

Seq AddrCtl = 11 Choose the next microinstruction sequentially.
Sequencing Fetch AddrCtl = 00 Go to the first microinstruction to begin a new instruction.

Dispatch 1 AddrCtl = 01 Dispatch using the ROM 1.
Dispatch 2 AddrCtl = 10 Dispatch using the ROM 2.

