
Jin-Fu Li
Department of Electrical Engineering

National Central University
Jungli, Taiwan

Chapter 9Chapter 9
Pipelining Pipelining

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 2

Basic Concepts
Data Hazards
Instruction Hazards

Outline

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 3

Content Coverage

Main Memory System

Input/Output System

Arithmetic
and

Logic Unit

Operational
Registers

Program
Counter

Control Unit

Data/InstructionAddress

Central Processing Unit (CPU)

Cache
memory

Instruction
Sets

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 4

Basic Concepts
Pipelining is a particularly effective way of
organizing concurrent activity in a computer
system
Let Fi and Ei refer to the fetch and execute steps
for instruction Ii

Execution of a program consists of a sequence of
fetch and execute steps, as shown below

F1 E1 F2 E2 F3 E3 F4 E4 F5

I1 I2 I3 I4 I5

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 5

Hardware Organization
Consider a computer that has two separate

hardware units, one for fetching instructions
and another for executing them, as shown
below

Instruction fetch
unit

Execution
unit

Interstage Buffer

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 6

Basic Idea of Instruction Pipelining

F1 E1

F2 E2

F3 E3

F4 E4

F E

I4

I3

I2

I1

Time
1 2 3 4 5

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 7

A 4-Stage Pipeline

F1 D1

F2 D2

F3 D3

F4 D4

F: Fetch
instruction

I4

I3

I2

I1

Time
1 2 3 4 5

E1 W1

E2 W2

E3 W3

E4 W4

6 7

B1

D: Decode
Instruction

& fetch
operands

B2

E: Execute
operation

B3

W: Write
results

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 8

Pipeline Performance
The pipeline processor show in last slide
completes the processing of one instruction in
each clock cycle, which means that the rate of
instruction processing is four times that of
sequential operation.
The potential increase in performance resulting
from pipelining is proportional to the number of
pipeline stages.
However, this increase would be achieved only if
pipelined operation could be sustained without
interruption throughout program execution

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 9

Hazard

Pipelined operation in above figure is said to have been
stalled for two clock cycles. Any condition that causes
the pipeline to stall is called a harzard

F1 D1

F2 D2

F3 D3

F4 D4I4

I3

I2

I1

Time1 2 3 4 5

E1 W1

E2 W2

E3 W3

E4 W4

6 7 8 9

F5 D5I5 E5 W5

10

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 10

Data Hazard and Instruction Hazard
A data hazard is any condition in which either
the source or the destination operands of an
instruction are not available at the time
expected in the pipeline. As a result some
operation has to be delayed, and the pipeline
stalls
The pipeline may also be stalled because of a
delay in the availability of an instruction. For
example, this may be a result of a miss in the
cache, requiring the instruction to be fetched
from the main memory. Such hazards are often
called control hazards or instruction hazards

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 11

An Example of Instruction Hazard

F1 D1

F2 D2

F3 D3I3

I2

I1

Time1 2 3 4 5

E1 W1

E2 W2

E3 W3

6 7 8 9 10

Time1 2 3 4 5 6 7 8 9 10

F1

Stage
F: Fetch

D: Decode

E: Execute

W: Write

F2 F2 F2 F2 F3

D1 idle D2 D3

E1 E2 E3

W2 W3

idle idle

idle idle idle

idle idle idleW1

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 12

Structural Hazard
Such idle periods shown in the last slide are called
stalls. They are also often referred to as bubbles in
the pipeline. Once created as a result of a delay in
one of the pipeline stages, a bubble moves
downstream until it reaches the last unit
In pipelined operation, when two instructions
require the use of a given hardware resource at the
same time, the pipeline has a structural hazard
The most common case in which this hazard may
arise is in access to memory. One instruction may
need to access memory as part of the Execute and
Write stage while another instruction is being
fetched

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 13

An Example of a Structural Hazard
Load X(R1), R2

F1 D1

F2 D2

F3 D3

F4 D4I4

I3

I2(Load)

I1

Time1 2 3 4 5

E1 W1

E2 W2

E3 W3

E4

6 7 8 9

F5 D5I5 E5 W5

10

M2

W5

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 14

Data Hazards
Consider a program that contains two instructions,
I1 followed by I2. When this program is executed in
a pipeline, the execution of I2 can begin before the
execution of I1 is completed. This means that the
results generated by I1 may not be available for use
by I2

Assume that A=5, and consider the following two
operations:

A 3+A
B 4xA
When these operations are performed in the order given, the
result is B=32. But if they are performed concurrently, the value
of A used in computing B would be the original value, 5,
leading to an incorrect result

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 15

Data Hazards
On the other hand, the two operations

A 5xC
B 20+C
can be performed concurrently, because these
operations are independent

These two examples illustrate a basic constraint
that must be enforced to guarantee correct
results.
When two operations depend on each other,
they must be performed sequentially in the
correct order

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 16

Data Hazards
For example, the two instructions

Mul R2, R3, R4
Add R5, R4, R6

F1 D1

F2 D2

F3 D3

F4 D4I4

I3

I2 (Add)

I1 (Mul)

Time1 2 3 4 5

E1 W1

D2A W2

E3 W3

E4

6 7 8 9

E2

W5

The pipeline schedule

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 17

Operand Forwarding in Datapath
The data hazard just described arises
because one instruction, instruction I2, is
waiting for data to be written in the register
file. However, these data are available at the
output of the output of the ALU once the
Execute stage completes step E1.
Hence, the delay can be reduced, or possibly
eliminated, if we arrange for the result of
instruction I1 to be forwarded directly for
use in step E2

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 18

Operand Forwarding in Datapath

SRC1 SRC1

ALU

RSLT

Source 1

Source 2

Register
file

Destination

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 19

Operand Forwarding in a Pipelined Processor

SRC1,SRC2

E: Execute
(ALU)

RSLT

W: Write
(Register file)

Forwarding path

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 20

Handling Data Hazards in Software
An alternative approach is to leave the task of
detecting data dependencies and dealing with
them to the software.
In this case, the compiler can introduce two-cycle
delay needed between instruction I1 and I2 by
inserting NOP (No-operation) instructions, as
follows:

I1: Mul R2, R3, R4
NOP
NOP

I2: Add R5, R4, R6

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 21

Instruction Hazards-Unconditional Branch
Unconditional branches

The time lost as a result of a branch instruction is
referred to as the branch penalty

F1 E1

F2 E2

F3 X

F4 E4Ik

I3

I2 (Branch)

I1

Time1 2 3 4 5 6

Ik+1 F4 E4

Execution unit idle

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 22

Branch Penalty
For a longer pipeline, the branch penalty may be
higher

F1 D1

F2 D2

F3 D3

F4 XI4

I3

I2(Branch)

I1

Time1 2 3 4 5

E1 W1

E2

X

6 7 8 9

Fk DkIk Ek Wk

Fk+1 Dk+1Ik+1 Ek+1 Wk+1

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 23

Branch Penalty Reduction
Reducing the branch penalty requires the branch address to be
computed earlier in the pipeline. Typically, the instruction fetch
unit has dedicated hardware to identify a branch instruction an
compute the branch target address as quickly as possible after an
instruction is fetched

F1 D1

F2 D2

F3I3

I2(Branch)

I1

Time1 2 3 4 5

E1 W1

X

6 7 8 9

Fk DkIk Ek Wk

Fk+1 Dk+1Ik+1 Ek+1 Wk+1

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 24

Instruction Queue and Prefetching
Either a cache miss or branch instruction stalls
the pipeline for one or more clock cycles. To
reduce the effect of these interruptions, many
processors employ sophisticated fetch units that
can fetch instructions before they are needed and
put them in a queue.
Typically, the instruction queue can store several
instructions. A separate unit, which we call the
dispatch unit, takes instructions from the front of
the queue and sends them to the execution unit.

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 25

Instruction Queue and Prefetching

E: Execute
instruction

F: Fetch
instruction

…
Instruction queue

D: Dispatch/
Decode unit

W: Write
results

When the pipeline stalls because of a data hazard, for example, the dispatch unit is
not able to issue instructions from the instruction queue. However, the fetch unit
continues to fetch instructions and add them to the queue. Conversely, if there is a
delay in fetching instructions because of a branch or a cache miss, the dispatch unit
continues to issue instructions from the instruction queue.

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 26

Conditional Branches
A conditional branch instruction introduces the
added hazard caused by the dependency of the
branch condition on the result of a preceding
instruction. The decision to branch cannot be made
until the execution of that instruction has been
completed
Branch instructions occur frequently. In fact, they
represent about 20% of the dynamic instruction
count of most programs. (The dynamic count is the
number of instruction executions, taking into
account the fact that some program instructions
are executed many times because of loops.)

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 27

Branch Prediction
The simplest form of branch prediction is to

assume that the branch will not take place and to
continue to fetch instructions in sequential address
order. Until the branch condition is evaluated,
instruction execution along the predicted path
must be done on a speculative basis.
Speculative execution means that instructions are
executed before the processor is certain that they
are in the correct execution sequence. Hence, care
must be taken that no processor register or
memory locations are updated until it is confirmed
that these instructions should indeed be executed.

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 28

An Example of Branch Prediction

F1 D1

F2 D2/P2

F3 D3

F4 XI4

I3

I2(Branch>0)

I1(Compare)

Time1 2 3 4 5

E1 W1

E2

X

6

Fk DkIk

The results of the compare operation are available at the end of cycle 3.
Assuming that they are forwarded immediately to the instruction fetch unit,
the branch condition is evaluated in cycle 4.

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 29

Dynamic Branch Prediction
The branch prediction decision is always the same
every time a given instruction is executed, this is
called static branch prediction
The prediction decision may changed depending
on execution history is called dynamic branch
prediction
In dynamic branch prediction schemes, the
processor hardware assesses the likelihood of a
given branch being taken by keeping track of
branch decisions every time that instruction is
executed

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 30

Dynamic Branch Prediction
The simplest form, the execution history used in
predicting the outcome of a given instruction is
the result of the most recent execution of that
instruction. The processor assumes that the next
time the instruction is executed, the result is likely
to be the same.
Hence, the algorithm may be described by a two-
state machine. The two states are

LT: Branch is likely to be taken
LNT: Branch is likely not to be taken

Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 31

Dynamic Branch Prediction

LNT LT

Branch taken (BT)

Branch not taken (BNT)

BTBNT

SNT

ST

LNTBNT

BT

BNT

LT

BT

BT

BT

BNT

BNT

ST: Strongly likely to be taken
LT: Likely to be taken
LNT: Likely not to be taken
SNT: Strongly likely not to be taken

