Transparent BIST for RAMs

Jin-Fu Li

Advanced Reliable Systems (ARES) Lab. Department of Electrical Engineering National Central University Jhongli, Taiwan

Outline

Introduction

- Concept of Transparent Test
- > Transparent Test Techniques
- Conclusions

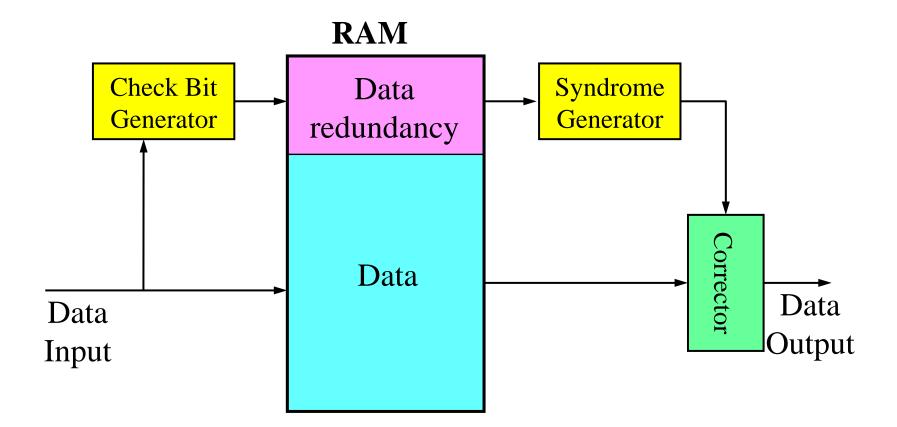
Reliability-Enhancement Techniques

- Fault-tolerant techniques are widely used to improve the reliability of systems
- > All fault-tolerant techniques require redundancy
 - Redundancy is simply the addition of information, resources, or time beyond what is needed for normal system operation
- > Types of redundancy
 - ➢Hardware redundancy
 - ➢Software redundancy
 - ➢Information redundancy
 - ➤Time redundancy

Memory Reliability-Enhancement Techniques

- Hardware redundancy
 - Built-in self-repair technique
- Error correction code
 - ➢Use information redundancy to protect stored data from soft error
- Periodic transparent testing
 - Periodically apply tests to detect hard faults manifested by latent faults

Typical Error-Correction-Code Scheme



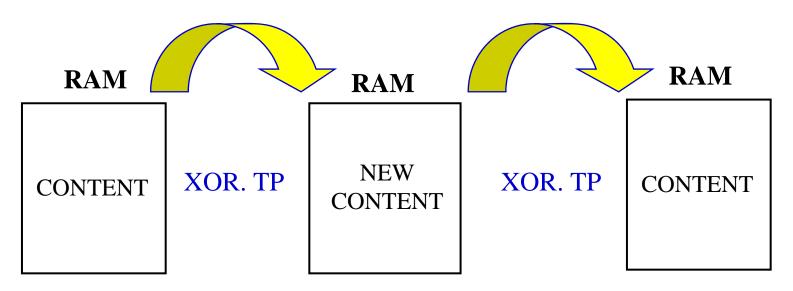
Hamming Error-Correction Code

- ➤ The Hamming single error-correction code uses c parity check bits to protect k bits of information. The relationship between the values of c and k is
 > 2^c ≥ c + k + 1
- Suppose that there are four information bits (d₃, d₂, d₁, d₀) and, as a result, three parity check bits (c₁, c₂, c₃). The bits are partitioned into groups as (d₃, d₁, d₀, c₁), (d₃, d₂, d₀, c₂), and (d₃, d₂, d₁, c₃). Each check bit is specified to set the parity of its respective group, i.e., c₁=d₃+d₁+d₀ c₂=d₃+d₂+d₀ c₃=d₃+d₂+d₁

What is Transparent Test?

- Transparent testing
 - Leave the original content of the circuit under test unchanged after the testing is completed if no faults are presented
- Features
 - Ensure the reliability of stored data throughout its life time
 - Provide better fault coverage than non-transparent testing for unmodeled faults
- Limitation
 - > Must be performed while systems are idle

Principle of Transparent Testing



- 1. Read (CONTENT), take signature S(CONTENT)
- 2. Read (CONTENT), Write (CONTENT. XOR. TP)=NEW_CONTENT
- 3. Read (NEW_CONTENT), take new signature S(NEW_CONTENT)
- 4. Write (NEW_CONTENT. XOR. TP)

NEW_CONTENT. XOR. TP=CONTENT. XOR. TP. XOR. TP=CONTENT

S(NEW_CONTENT)=S(CONTENT. XOR. TP)=S(CONTENT). XOR. S(TP)

Issues of Transparent Testing

> Test interrupts

In comparison with manufacturing testing, one special issue of transparent testing is that the transparent testing process may be interrupted

Aliasing

If a transparent built-in self-test scheme is considered, the signature generation typically is done by a MISR

Fault location

If a fault is detected, it is very difficult to locate the fault

A Typical Transparent March Test

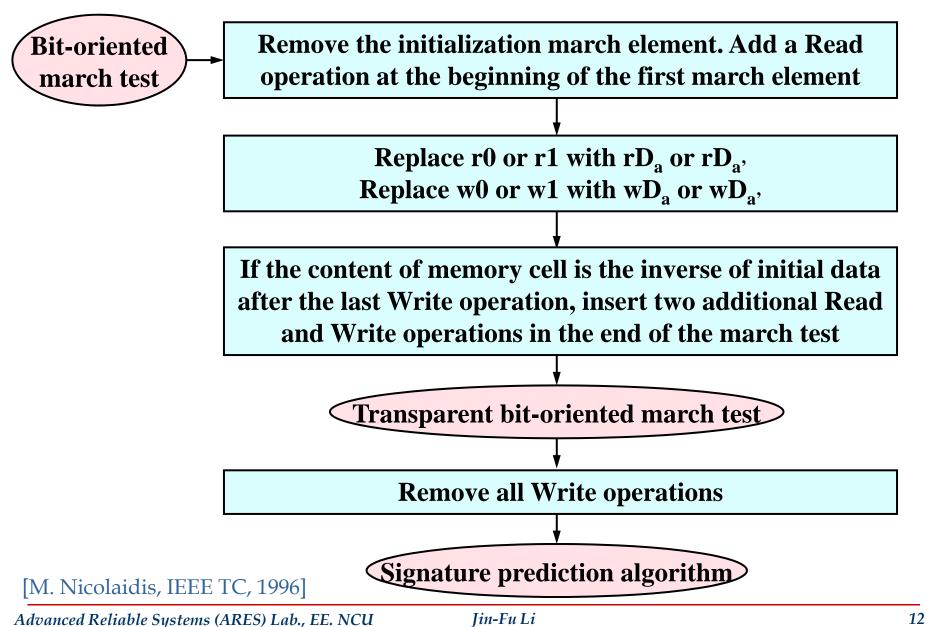
- A typical transparent March test consists of twophase tests
 - Signature-prediction test
 - Transparent March test
- > Types of transparent test schemes
 - Transparent March tests
 - Symmetric transparent March tests
 - Combination of Transparent March tests and ECCs

Notation

> In a test algorithm

- D denotes the initial content of a cell or a word for bitoriented or word-oriented memories
- \succ D_a is data of the bit-wise XOR operation on D and a
- \blacktriangleright (\Downarrow) represents the ascending (descending) address sequence
- the denotes either ascending or descending address sequence
- \succ wX denotes a write X operation
- \succ rX denotes a read operation with expect data X

A Typical Transformation Method



An Example

- Consider the March C- test: > { $(w0); \uparrow (r0, w1); \uparrow (r1, w0); \downarrow (r1, w0); \downarrow (r0, w1); \uparrow (r0)$ }
- > After Step 1 transformation:
 - $\succ \{ \Uparrow (r0, w1); \Uparrow (r1, w0); \Downarrow (r1, w0); \Downarrow (r0, w1); \updownarrow (r0) \}$
- > After Step 2 transformation:
 - $\succ \{ (rD_a, wD_{\overline{a}}); (rD_{\overline{a}}, wD_a); \forall (rD_a, wD_{\overline{a}}); \forall (rD_{\overline{a}}, wD_a); \forall (rD_{\overline{a}}, wD_{\overline{a}}); \forall (rD_{\overline{a}}, wD_$
- ➤ The content of memory cell after the last operation is the same as the initial state. Step 3 is omitted.
- ➤ Thus, the transparent March C- test is follows:
 > {↑ (rD_a, wD_a); ↑ (rD_a, wD_a); ↓ (rD_a, wD_a); ↓ (rD_a, wD_a); ↓ (rD_a, wD_a); ↓ (rD_a)}
- Remove the Write operations. The signature prediction algorithm is as follows:
 - $\succ \{ (rD_a); (rD_{\overline{a}}); (rD_{\overline{a}}); (rD_{\overline{a}}); (rD_{\overline{a}}); (rD_{\overline{a}}); (rD_{\overline{a}}); (rD_{\overline{a}}) \}$

Word-Oriented Transparent Tests

- Word-oriented transparent test can be obtained
 - > By applying the transformation rules to all the bits of each word [Nicolaids, ITC92].
- E.g., a word-oriented March C- for 4-bit words
 - $\succ T1: \begin{array}{l} \{ \ (w\ 0000\); \ (r\ 0000\ , w\ 1111\); \ (r\ 1111\ , w\ 0000\); \ (r\ 1111\); \ (r\ 11111\); \ (r\ 111\); \ (r\ 1111\); \ (r\ 1111\); \ (r\ 111$
 - > T2: $\{ (w0101); (r0101, w1010); (r1010, w0101); (r0101, w1010); \}$
 - \Downarrow (*r*1010 , *w*0101); \Uparrow (*r*0101)}

> T3: { $(w0011); \uparrow (r0011, w1100); \uparrow (r1100, w0011); \downarrow (r0011, w1100);$ \Downarrow (r1100, w0011); \updownarrow (r0011)}

- > Thus, the transparent word-oriented March C-
 - $\succ T1': \{ (rD_{a0}, wD_{\overline{a0}}); (rD_{\overline{a0}}, wD_{a0}); \forall (rD_{a0}, wD_{\overline{a0}}); \forall (rD_{\overline{a0}}, wD_{a0}); \forall (rD_{\overline{a0}}, wD_{a0}); \forall (rD_{\overline{a0}}, wD_{a0}); \forall (rD_{\overline{a0}}, wD_{a1}) \}$
 - $\succ T2': \{ (rD_{a1}, wD_{\overline{a1}}); (rD_{\overline{a1}}, wD_{a1}); \forall (rD_{\overline{a1}}, wD_{\overline{a1}}); \forall (rD_{\overline{a1}}, wD_{\overline{a1}}); \forall (rD_{\overline{a1}}, wD_{\overline{a1}}); \forall (rD_{\overline{a1}}, wD_{\overline{a1}}); \forall (rD_{\overline{a1}}, wD_{\overline{a2}}) \}$

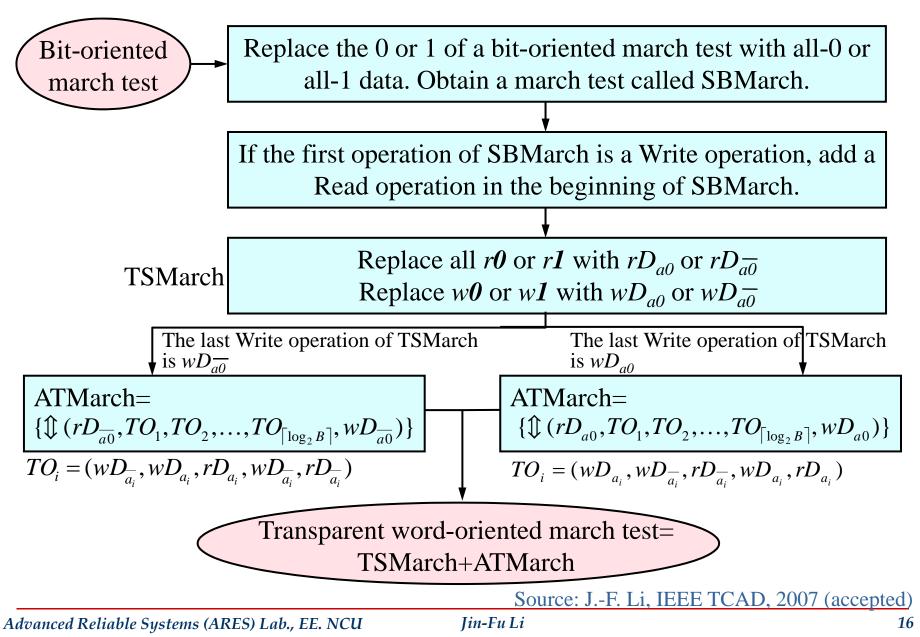
> T3': { $(rD_{a2}, wD_{a2}); (rD_{a2}, wD_{a2$

Jin-Fu Li

Problem

- Transparent tests are usually applied in the idle state of systems or components
- Reducing the test time is very important
 - > Avoiding the interrupt of testing
- However, conventional transparent word-oriented march tests are directly obtained
 - By executing the corresponding bit-oriented march test on each bit of word
- Thus, conventional transformation does not generate a time-efficiency word-oriented march test

Efficient Word-Oriented Transparent Tests



Example

- Consider a bit-oriented March U [15]
 - $\succ \{ (w0); (r0, w1, r1, w0); (r0, w1); \forall (r1, w0, r0, w1); \forall (r1, w0) \}$
- Then, the solid March U (SBMarch U) is as follows $\{ (w\vec{0}); (\vec{r}, w\vec{1}, r\vec{1}, w\vec{0}); (r\vec{0}, w\vec{1}); \forall (r\vec{1}, w\vec{0}, r\vec{0}, w\vec{1}); \forall (r\vec{1}, w\vec{0}) \}$ where $\vec{0}$ and $\vec{1}$ denote all-0 and all-1 data
- According to the transformation rules described above, the transparent SBMarch U (TSMarch U) is
 - $\left\{ \left((rD_{a0}, wD_{\overline{a0}}, rD_{\overline{a0}}, wD_{a0}); \left((rD_{a0}, wD_{\overline{a0}}); \psi(rD_{\overline{a0}}, wD_{a0}, rD_{a0}, wD_{\overline{a0}}); \psi(rD_{\overline{a0}}, wD_{a0}) \right\} \right\}$

 \succ where *a0* denotes all-0 data

> The last operation of TSMarch U is wD_{a0}

 $\mathsf{ATMarch} - (rD_{a_0}, wD_{a_1}, wD_{\overline{a_1}}, rD_{\overline{a_1}}, wD_{a_1}, rD_{a_1}, wD_{a_2}, wD_{\overline{a_2}}, rD_{\overline{a_2}}, wD_{a_2}, mD_{\overline{a_2}}, wD_{\overline{a_2}}, wD_{\overline{a_3}}, wD_{\overline{a_3}}, rD_{\overline{a_3}}, wD_{a_3}, rD_{\overline{a_3}}, wD_{a_3}, wD_{a_3}, mD_{\overline{a_3}}, wD_{\overline{a_3}}, mD_{\overline{a_3}}, wD_{\overline{a_3}}, mD_{\overline{a_3}}, wD_{\overline{a_3}}, mD_{\overline{a_3}}, wD_{\overline{a_3}}, mD_{\overline{a_3}}, mD$

Symmetric Transparent Tests

➢ Feature

The symmetric transparent test method take advantage of the symmetric characteristic of a signature analyzer to eliminate the signature prediction phase

> Symmetric characteristic of a signature analyzer

Let sig(z, S, h)=u denote a serial signature analyzer which has an initial state S, a feedback polynomial h, a data string for analysis z, and the corresponding signature u. Then we can obtain sig(z*, u*, h*)=S*, where z*, u*, h*, and S* denote the reverse of z, u, h, and S, respectively [V. N. Yarmolik and S. Hellebrand, DATE99]

An Example

A 2*n*-bit data string $Z = (x_{2n-1}x_{2n-2}...x_nx_{n-1}...x_1x_0)$ is called a symmetric data string if

>
$$x_{n-1} = x_n, x_{n-2} = x_{n+1}, \dots, x_1 = x_{2n-2}, x_0 = x_{2n-1}$$

• or
$$x_{n-1} = x_n, x_{n-2} = x_{n+1}, \dots, x_1 = x_{2n-2}, x_0 = x_{2n-1}$$

- Consider a symmetric data string Z=(zz*).
 Assume that a reconfigurable signature analyzer sig(-, 0, h) is used to analyze the symmetric data string Z
 - > Step 1: z is analyzed and sig(z, 0, h)=u
 - > Step 2: analyzer is configured as $sig(-, u^*, h^*)$

> Step 3: z^* is analyzed and $sig(z^*, u^*, h^*)=0^*=0$

Symmetric Transparent March Tests

- A transparent March test is a symmetric transparent March test if the read data of the Read operations of the transparent March test is a symmetric data string Z
- It can be transformed to a transparent March test

$$\succ \{ \uparrow (rD_{a_0}, wD_{\overline{a_0}}); \Downarrow (rD_{\overline{a_0}}, wD_{a_0}) \}$$

> The read data can be expressed as $Z=(z,z^{*c})$

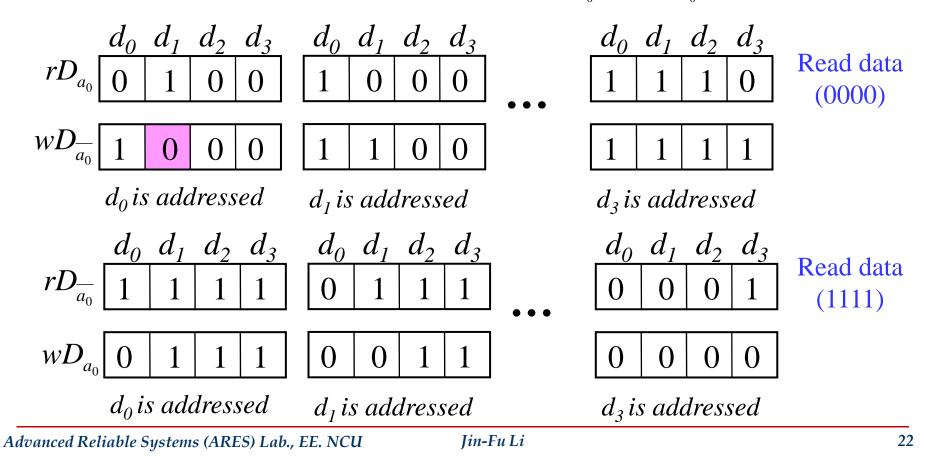
Jin-Fu Li

Limitations

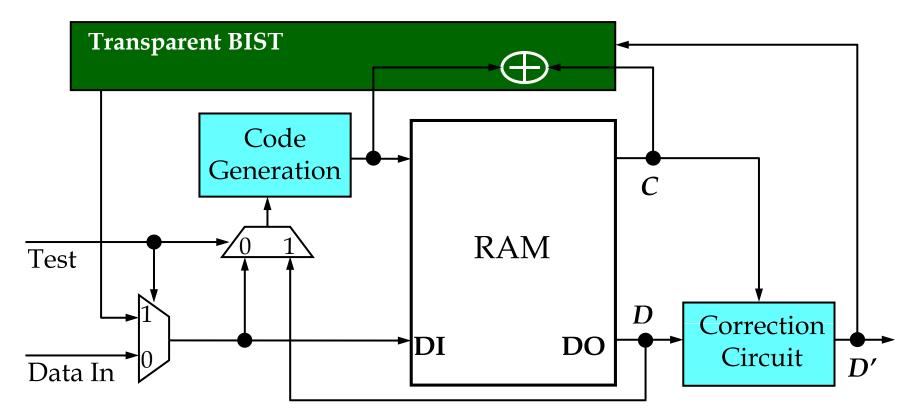
- Symmetric transparent March tests have two major limitations
 - Fault masking effect
 - Test interrupts cause the symmetric characteristic to be invalid
- Consider a 4-bit memory with initial content $(d_0d_1d_2d_3)=(0100)$. Assume that the memory has an idempotent coupling fault in which the aggressor and victim are at d_0 and d_1 . Also, the value of the victim is forced to 0 while the aggressor has a 0 to 1 transition

Fault Masking Effect

- Assume that the symmetric transparent MATS+ is used to test a 4-bit memory with a CFid
 - $\succ \text{ Transparent MATS+: } \{ \Uparrow (rD_{a_0}, wD_{\overline{a_0}}); \Downarrow (rD_{\overline{a_0}}, wD_{a_0}) \}$



Transparent Test Scheme for a RAM with ECC



Read: Read the data D at DO; Check if Code_Gen(D)=C **Write**: Write the data D'. XOR. TP

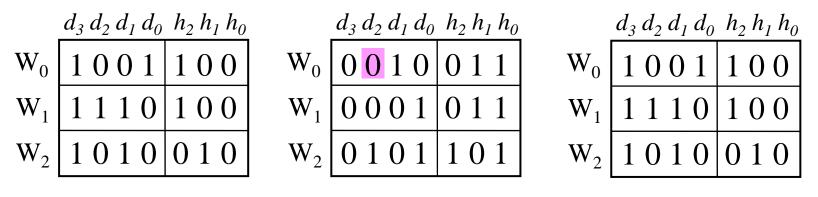
Source: J.-F. Li, IEEE TCAD, 2007 (accepted)

Features

- No signature prediction phase is needed. This shortens the testing time such that the probability of an interruption is reduced
- Really restoring the original content of the memory under test is achieved if the number of faulty bits of a word is less than the correction capability of the applied ECC
- It can locate the faulty bit of the faulty word by the checking response. The fault location capability is also related to the correction capability of the applied ECC

Example

- Consider a 3x4-bit memory with Hamming ECC. Also, the transparent March MATS+ is used to test the memory
 - Transparent March MATS+: { $\uparrow (rD_{a_0}, wD_{\overline{a_0}}); \Downarrow (rD_{\overline{a_0}}, wD_{a_0})$ } Assume that *d2* of the first word has a stuck-at-0 fault



Conclusions

- With the advent CMOS technology, enhancing the reliability of an integrated circuit becomes one major challenge
 - Effective and efficient reliability-enhancement techniques must be developed
- ➢ Various transparent test techniques have been presented

References

- 1. M. Nicolaidis, "Theory of transparent BIST for RAMs," *IEEE Trans. on Computers*, vol. 45, no. 10, pp. 1141–1156, Oct. 1996.
- 2. V. N. Yarmolik and S. Hellebrand, "Symmetric transparent BIST for RAMs," in *Proc. Conf. Design, Automation, and Test in Europe (DATE)*, 1999, pp. 702–707.
- 3. J.-F. Li,"Transparent test methodologies for random access memories with/without ECC," *IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems*, vol.26, no.10, pp. 1888-1893, Oct. 2007.