
ARM
®

Developer Suite
Version 1.1

Assembler Guide
Copyright © 2000 ARM Limited. All rights reserved.
ARM DUI 0068A

ARM Developer Suite
Assembler Guide

Copyright © 2000 ARM Limited. All rights reserved.

Release Information

The following changes have been made to this book.

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks owned by ARM Limited. Other
brands and names mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith. However,
all warranties implied or expressed, including but not limited to implied warranties of merchantability, or
fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Change History

Date Issue Change

November 2000 A Release 1.1
ii Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Contents
Assembler Guide

Preface
About this book .. vi
Feedback ... ix

Chapter 1 Introduction
1.1 About the ARM Developer Suite assemblers .. 1-2

Chapter 2 Writing ARM and Thumb Assembly Language
2.1 Introduction ... 2-2
2.2 Overview of the ARM architecture .. 2-3
2.3 Structure of assembly language modules ... 2-12
2.4 Conditional execution .. 2-19
2.5 Loading constants into registers ... 2-24
2.6 Loading addresses into registers .. 2-29
2.7 Load and store multiple register instructions ... 2-38
2.8 Using macros .. 2-47
2.9 Describing data structures with MAP and FIELD directives 2-50
2.10 Using frame directives ... 2-65

Chapter 3 Assembler Reference
3.1 Command syntax .. 3-2
3.2 Format of source lines .. 3-8
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. iii
Confidential Draft

Contents
3.3 Predefined register and coprocessor names .. 3-9
3.4 Built-in variables ... 3-10
3.5 Symbols .. 3-12
3.6 Expressions, literals, and operators ... 3-18

Chapter 4 ARM Instruction Reference
4.1 Conditional execution ... 4-4
4.2 ARM memory access instructions .. 4-6
4.3 ARM general data processing instructions ... 4-23
4.4 ARM multiply instructions ... 4-39
4.5 ARM saturating arithmetic instructions ... 4-54
4.6 ARM branch instructions .. 4-56
4.7 ARM coprocessor instructions .. 4-61
4.8 Miscellaneous ARM instructions ... 4-70
4.9 ARM pseudo-instructions ... 4-76

Chapter 5 Thumb Instruction Reference
5.1 Thumb memory access instructions ... 5-4
5.2 Thumb arithmetic instructions ... 5-15
5.3 Thumb general data processing instructions .. 5-22
5.4 Thumb branch instructions ... 5-31
5.5 Thumb software interrupt and breakpoint instructions 5-37
5.6 Thumb pseudo-instructions .. 5-39

Chapter 6 Vector Floating-point Programming
6.1 The vector floating-point coprocessor .. 6-4
6.2 Floating-point registers ... 6-5
6.3 Vector and scalar operations .. 6-7
6.4 VFP and condition codes .. 6-8
6.5 VFP system registers ... 6-10
6.6 Flush-to-zero mode .. 6-13
6.7 VFP instructions ... 6-15
6.8 VFP pseudo-instruction .. 6-34
6.9 VFP directives and vector notation ... 6-35

Chapter 7 Directives Reference
7.1 Alphabetical list of directives .. 7-2
7.2 Symbol definition directives .. 7-3
7.3 Data definition directives .. 7-12
7.4 Assembly control directives .. 7-25
7.5 Frame description directives ... 7-31
7.6 Reporting directives .. 7-42
7.7 Miscellaneous directives ... 7-47

Glossary
iv Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A
Confidential Draft

Preface

This preface introduces the documentation for the ARM Developer Suite (ADS)
assemblers and assembly language. It contains the following sections:

• About this book on page vi

• Feedback on page ix.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. v

Preface
About this book

This book provides tutorial and reference information for the ADS assemblers (armasm,
the free-standing assembler, and inline assemblers in the C and C++ compilers). It
describes the command-line options to the assembler, the pseudo-instructions and
directives available to assembly language programmers, and the ARM, Thumb®, and
Vector Floating-point (VFP) instruction sets.

Intended audience

This book is written for all developers who are producing applications using ADS. It
assumes that you are an experienced software developer and that you are familiar with
the ARM development tools as described in ADS Getting Started.

Using this book

This book is organized into the following chapters:

Chapter 1 Introduction

Read this chapter for an introduction to the ADS version 1.1 assemblers
and assembly language.

Chapter 2 Writing ARM and Thumb Assembly Language

Read this chapter for tutorial information to help you use the ARM
assemblers and assembly language.

Chapter 3 Assembler Reference

Read this chapter for reference material about the syntax and structure of
the language provided by the ARM assemblers.

Chapter 4 ARM Instruction Reference

Read this chapter for reference material on the ARM instruction set.

Chapter 5 Thumb Instruction Reference

Read this chapter for reference material on the Thumb instruction set.

Chapter 6 Vector Floating-point Programming

Read this chapter for reference material on the VFP instruction set, and
other VFP-specific assembly language information.

Chapter 7 Directives Reference

Read this chapter for reference material on the assembler directives
available in the ARM assembler, armasm.
vi Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Preface
Typographical conventions

The following typographical conventions are used in this book:

typewriter Denotes text that can be entered at the keyboard, such as commands, file
and program names, and source code.

typewriter Denotes a permitted abbreviation for a command or option. The
underlined text can be entered instead of the full command or option
name.

typewriter italic

Denotes arguments to commands and functions where the argument is to
be replaced by a specific value.

italic Highlights important notes, introduces special terminology, denotes
internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Also used for
emphasis in descriptive lists, where appropriate, and for ARM processor
signal names.

typewriter bold

Denotes language keywords when used outside example code.

Further reading

This section lists publications from both ARM Limited and third parties that provide
additional information on developing code for the ARM family of processors.

ARM periodically provides updates and corrections to its documentation. See
http://www.arm.com for current errata sheets and addenda.

See also the ARM Frequently Asked Questions list at:
http://www.arm.com/DevSupp/Sales+Support/faq.html

ARM publications

This book contains reference information that is specific to development tools supplied
with ADS. Other publications included in the suite are:

• ADS Installation and License Management Guide (ARM DUI 0139)

• Getting Started (ARM DUI 0064)

• ADS Compiler, Linker, and Utilities Guide (ARM DUI 0067)
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. vii

Preface
• CodeWarrior IDE Guide (ARM DUI 0065)

• ADS Debuggers Guide (ARM DUI 0066)

• ADS Debug Target Guide (ARM DUI 0058)

• ADS Developer Guide (ARM DUI 0056)

• ARM Applications Library Programmer’s Guide (ARM DUI 0081).

The following additional documentation is provided with the ARM Developer Suite:

• ARM Architecture Reference Manual (ARM DDI 0100). This is supplied in
DynaText format as part of the online books, and in PDF format in
install_directory\PDF\ARM-DDI0100B_armarm.pdf.

• ARM ELF specification (SWS ESPC 0003). This is supplied in PDF format in
install_directory\PDF\specs\ARMELF.pdf.

• TIS DWARF 2 specification. This is supplied in PDF format in
install_directory\PDF\specs\TIS-DWARF2.pdf.

• ARM/Thumb Procedure Call Specification. This is supplied in PDF format in
install_directory\PDF\specs\ATPCS.pdf.

In addition, refer to the following documentation for specific information relating to
ARM products:

• ARM Reference Peripheral Specification (ARM DDI 0062)

• the ARM datasheet or technical reference manual for your hardware device.

Other publications

The following book gives general information about the ARM architecture:

• ARM System-on-chip Architecture, Furber, S., (2nd Edition, 2000). Addison
Wesley Longman, Harlow, England. ISBN 0-201-67519-6.
viii Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Preface
Feedback

ARM Limited welcomes feedback on both ADS and the documentation.

Feedback on the ARM Developer Suite

If you have any problems with ADS, please contact your supplier. To help them provide
a rapid and useful response, please give:

• your name and company

• the serial number of the product

• details of the release you are using

• details of the platform you are running on, such as the hardware platform,
operating system type and version

• a small standalone sample of code that reproduces the problem

• a clear explanation of what you expected to happen, and what actually happened

• the commands you used, including any command-line options

• sample output illustrating the problem

• the version string of the tools, including the version number and build numbers.

Feedback on this book

If you have any problems with this book, please send email to errata@arm.com giving:

• the document title

• the document number

• the page number(s) to which your comments apply

• a concise explanation of the problem.

General suggestions for additions and improvements are also welcome.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. ix

Preface
x Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Chapter 1-
Introduction

This chapter introduces the assemblers provided with ARM Developer Suite (ADS)
version 1.1. It contains the following sections:

• About the ARM Developer Suite assemblers on page 1-2.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 1-1

Introduction
1.1 About the ARM Developer Suite assemblers

ARM Developer Suite (ADS) has:

• a freestanding assembler, armasm

• an optimizing inline assembler built into the C and C++ compilers.

The language that these assemblers take as input is basically the same. However, there
are limitations on what features of the language you can use in the inline assemblers.
Refer to the Mixing C, C++, and Assembly Language chapter in ADS Developer Guide
for further information on the inline assemblers.

The remainder of this book relates mainly to armasm.
1-2 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Chapter 2-
Writing ARM and Thumb Assembly Language

This chapter provides an introduction to the general principles of writing ARM and
Thumb assembly language. It contains the following sections:

• Introduction on page 2-2

• Overview of the ARM architecture on page 2-3

• Structure of assembly language modules on page 2-12

• Conditional execution on page 2-19

• Loading constants into registers on page 2-24

• Loading addresses into registers on page 2-29

• Load and store multiple register instructions on page 2-38

• Using macros on page 2-47

• Describing data structures with MAP and FIELD directives on page 2-50

• Using frame directives on page 2-65.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 2-1

Writing ARM and Thumb Assembly Language
2.1 Introduction

This chapter gives a basic, practical understanding of how to write ARM and Thumb
assembly language modules. It also gives information on the facilities provided by the
ARM assembler (armasm).

This chapter does not provide a detailed description of the ARM, Thumb, or VFP
instruction sets. This information can be found in Chapter 4 ARM Instruction
Reference, Chapter 5 Thumb Instruction Reference, and Chapter 6 Vector
Floating-point Programming. Further information can be found in ARM Architecture
Reference Manual.

2.1.1 Code examples

There are a number of code examples in this chapter. Many of them are supplied in the
examples\asm directory of the ADS.

Follow these steps to build, link, and execute an assembly language file:

1. Type armasm -g filename.s at the command prompt to assemble the file and
generate debug tables.

2. Type armlink filename.o -o filename to link the object file and generate and ELF
executable image.

3. Type armsd filename to load the image file into the debugger.

4. Type go at the armsd: prompt to execute it.

5. Type quit at the armsd: prompt to return to the command line.

To see how the assembler converts the source code, enter:

 fromelf -text /c filename.o

or run the module in AXD, ADW, or ADU with interleaving on.

See:

• ADS Debuggers Guide for details on armsd, AXD, ADW, and ADU.

• ADS Compiler, Linker, and Utilities Guide for details on armlink and fromelf.
2-2 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Writing ARM and Thumb Assembly Language
2.2 Overview of the ARM architecture

This section gives a brief overview of the ARM architecture.

ARM processors are typical of RISC processors in that they implement a load/store
architecture. Only load and store instructions can access memory. Data processing
instructions operate on register contents only.

2.2.1 Architecture versions

The information and examples in this book assume that you are using a processor that
implements ARM architecture v3 or above. See ARM Architecture Reference Manual
for details of the various architecture versions.

All these processors have a 32-bit addressing range.

2.2.2 ARM and Thumb state

ARM architecture versions v4T and above define a 16-bit instruction set called the
Thumb instruction set. The functionality of the Thumb instruction set is a subset of the
functionality of the 32-bit ARM instruction set. Refer to Thumb instruction set overview
on page 2-9 for more information.

A processor that is executing Thumb instructions is operating in Thumb state. A
processor that is executing ARM instructions is operating in ARM state.

A processor in ARM state cannot execute Thumb instructions, and a processor in
Thumb state cannot execute ARM instructions. You must ensure that the processor
never receives instructions of the wrong instruction set for the current state.

Each instruction set includes instructions to change processor state.

You must also switch the assembler mode to produce the correct opcodes using CODE16

and CODE32 directives. Refer to CODE16 and CODE32 on page 7-52 for details.

ARM processors always start executing code in ARM state.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 2-3

Writing ARM and Thumb Assembly Language
2.2.3 Processor mode

ARM processors support up to seven processor modes, depending on the architecture
version. These are:

• User

• FIQ - Fast Interrupt Request

• IRQ - Interrupt Request

• Supervisor

• Abort

• Undefined

• System (ARM architecture v4 and above).

All modes except User mode are referred to as privileged modes.

Applications that require task protection usually execute in User mode. Some
embedded applications might run entirely in Supervisor or System modes.

Modes other than User mode are entered to service exceptions, or to access privileged
resources. Refer to the Handling Processor Exceptions chapter in ADS Developer
Guide, and ARM Architecture Reference Manual for more information.

2.2.4 Registers

ARM processors have 37 registers. The registers are arranged in partially overlapping
banks. There is a different register bank for each processor mode. The banked registers
give rapid context switching for dealing with processor exceptions and privileged
operations. Refer to ARM Architecture Reference Manual for a detailed description of
how registers are banked.

The following registers are available in ARM architecture v3 and above:

• 30 general-purpose, 32-bit registers

• The program counter (pc) on page 2-5

• The Current Program Status Register (CPSR) on page 2-5

• Five Saved Program Status Registers (SPSRs) on page 2-5.

30 general-purpose, 32-bit registers

Fifteen general-purpose registers are visible at any one time, depending on the current
processor mode, as r0, r1, ... ,r13, r14.

By convention, r13 is used as a stack pointer (sp) in ARM assembly language. The C
and C++ compilers always use r13 as the stack pointer.
2-4 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Writing ARM and Thumb Assembly Language
In User mode, r14 is used as a link register (lr) to store the return address when a
subroutine call is made. It can also be used as a general-purpose register if the return
address is stored on the stack.

In the exception handling modes, r14 holds the return address for the exception, or a
subroutine return address if subroutine calls are executed within an exception. r14 can
be used as a general-purpose register if the return address is stored on the stack.

The program counter (pc)

The program counter is accessed as r15 (or pc). It is incremented by one word (four
bytes) for each instruction in ARM state, or by two bytes in Thumb state. Branch
instructions load the destination address into the program counter. You can also load the
program counter directly using data operation instructions. For example, to return from
a subroutine, you can copy the link register into the program counter using:

 MOV pc,lr

During execution, r15 does not contain the address of the currently executing
instruction. The address of the currently executing instruction is typically pc–8 for
ARM, or pc–4 for Thumb.

The Current Program Status Register (CPSR)

The CPSR holds:

• copies of the Arithmetic Logic Unit (ALU) status flags

• the current processor mode

• interrupt disable flags.

The ALU status flags in the CPSR are used to determine whether conditional
instructions are executed or not. Refer to Conditional execution on page 2-19 for more
information.

On Thumb-capable processors, the CPSR also holds the current processor state (ARM
or Thumb).

On ARM architecture v5TE, the CPSR also holds the Q flag (see The ALU status flags
on page 2-19).

Five Saved Program Status Registers (SPSRs)

The SPSRs are used to store the CPSR when an exception is taken. One SPSR is
accessible in each of the exception-handling modes. User mode and System mode do
not have an SPSR because they are not exception handling modes. Refer to the
Handling Processor Exceptions chapter in ADS Developer Guide for more information.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 2-5

Writing ARM and Thumb Assembly Language
2.2.5 ARM instruction set overview

All ARM instructions are 32 bits long. Instructions are stored word-aligned, so the least
significant two bits of instruction addresses are always zero in ARM state. Some
instructions use the least significant bit to determine whether the code being branched
to is Thumb code or ARM code.

See Chapter 4 ARM Instruction Reference for detailed information on the syntax of the
ARM instruction set.

ARM instructions can be classified into a number of functional groups:

• Branch instructions

• Data processing instructions

• Single register load and store instructions

• Multiple register load and store instructions on page 2-7

• Status register access instructions on page 2-7

• Semaphore instructions on page 2-7

• Coprocessor instructions on page 2-7.

Branch instructions

These instructions are used to:

• branch backwards to form loops

• branch forward in conditional structures

• branch to subroutines

• change the processor from ARM state to Thumb state.

Data processing instructions

These instructions operate on the general-purpose registers. They can perform
operations such as addition, subtraction, or bitwise logic on the contents of two registers
and place the result in a third register. They can also operate on the value in a single
register, or on value in a register and a constant supplied within the instruction (an
immediate value).

Long multiply instructions (unavailable in some architectures) give a 64-bit result in
two registers.
2-6 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Writing ARM and Thumb Assembly Language
Single register load and store instructions

These instructions load or store the value of a single register from or to memory. They
can load or store a 32-bit word or an 8-bit unsigned byte. In ARM architecture v4 and
above they can also load or store a 16-bit unsigned halfword, or load and sign extend a
16-bit halfword or an 8-bit byte.

Multiple register load and store instructions

These instructions load or store any subset of the general-purpose registers from or to
memory. Refer to Load and store multiple register instructions on page 2-38 for a
detailed description of these instructions.

Status register access instructions

These instructions move the contents of the CPSR or an SPSR to or from a
general-purpose register.

Semaphore instructions

These instructions load and alter a memory semaphore.

Coprocessor instructions

These instructions support a general way to extend the ARM architecture.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 2-7

Writing ARM and Thumb Assembly Language
2.2.6 ARM instruction capabilities

The following general points apply to ARM instructions:

• Conditional execution

• Register access

• Access to the inline barrel shifter.

Conditional execution

Almost all ARM instructions can be executed conditionally on the value of the ALU
status flags in the CPSR. You do not need to use branches to skip conditional
instructions, although it can be better to do so when a series of instructions depend on
the same condition.

You can specify whether a data processing instruction sets the state of these flags or not.
You can use the flags set by one instruction to control execution of other instructions
even if there are many instructions in between.

Refer to Conditional execution on page 2-19 for a detailed description.

Register access

In ARM state, all instructions can access r0 to r14, and most also allow access to r15
(pc). The MRS and MSR instructions can move the contents of the CPSR and SPSRs to a
general-purpose register, where they can be manipulated by normal data processing
operations. Refer to MRS on page 4-72 and MSR on page 4-73 for more information.

Access to the inline barrel shifter

The ARM arithmetic logic unit has a 32-bit barrel shifter that is capable of shift and
rotate operations. The second operand to all ARM data-processing and single register
data-transfer instructions can be shifted, before the data-processing or data-transfer is
executed, as part of the instruction. This supports, but is not limited to:

• scaled addressing

• multiplication by a constant

• constructing constants.

Refer to Loading constants into registers on page 2-24 for more information on using
the barrel-shifter to generate constants.
2-8 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Writing ARM and Thumb Assembly Language
2.2.7 Thumb instruction set overview

The functionality of the Thumb instruction set is almost exactly a subset of the
functionality of the ARM instruction set. The instruction set is optimized for production
by a C or C++ compiler.

All Thumb instructions are 16 bits long and are stored halfword-aligned in memory.
Because of this, the least significant bit of the address of an instruction is always zero
in Thumb state. Some instructions use the least significant bit to determine whether the
code being branched to is Thumb code or ARM code.

All Thumb data processing instructions:

• operate on full 32-bit values in registers

• use full 32-bit addresses for data access and for instruction fetches.

Refer to Chapter 5 Thumb Instruction Reference for detailed information on the syntax
of the Thumb instruction set, and how Thumb instructions differ from their ARM
counterparts.

2.2.8 Thumb instruction capabilities

The following general points apply to Thumb instructions:

• Conditional execution

• Register access

• Access to the barrel shifter.

Conditional execution

The conditional branch instruction is the only Thumb instruction that can be executed
conditionally on the value of the ALU status flags in the CPSR. All data processing
instructions update these flags, except when one or more high registers are specified as
operands to the MOV or ADD instructions. In these cases the flags cannot be updated.

You cannot have any data processing instructions between an instruction that sets a
condition and a conditional branch that depends on it. Use a conditional branch over any
instruction that you wish to be conditional.

Register access

In Thumb state, most instructions can access only r0 to r7. These are referred to as the
low registers.

Registers r8 to r15 are limited access registers. In Thumb state these are referred to as
high registers. They can be used, for example, as fast temporary storage.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 2-9

Writing ARM and Thumb Assembly Language
Refer to Chapter 5 Thumb Instruction Reference for a complete list of the Thumb data
processing instructions that can access the high registers.

Access to the barrel shifter

In Thumb state you can use the barrel shifter only in a separate operation, using an LSL,
LSR, ASR, or ROR instruction.

2.2.9 Differences between Thumb and ARM instruction sets

The general differences between the Thumb instruction set and the ARM instruction set
are dealt with under the following headings:

• Branch instructions

• Data processing instructions on page 2-10

• Single register load and store instructions on page 2-11

• Multiple register load and store instructions on page 2-11.

There are no Thumb coprocessor instructions, no Thumb semaphore instructions, and
no Thumb instructions to access the CPSR or SPSR.

Branch instructions

These instructions are used to:

• branch backwards to form loops

• branch forward in conditional structures

• branch to subroutines

• change the processor from Thumb state to ARM state.

Program-relative branches, particularly conditional branches, are more limited in range
than in ARM code, and branches to subroutines can only be unconditional.

Data processing instructions

These operate on the general-purpose registers. In many cases, the result of the
operation must be put in one of the operand registers, not in a third register. There are
fewer data processing operations available than in ARM state. They have limited access
to registers r8 to r15.

The ALU status flags in the CPSR are always updated by these instructions except when
MOV or ADD instructions access registers r8 to r15. Thumb data processing instructions
that access registers r8 to r15 cannot update the flags.
2-10 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Writing ARM and Thumb Assembly Language
Single register load and store instructions

These instructions load or store the value of a single low register from or to memory. In
Thumb state they can only access registers r0 to r7.

Multiple register load and store instructions

LDM and STM load from memory and store to memory any subset of the registers in the
range r0 to r7.

PUSH and POP instructions implement a full descending stack using the stack pointer (r13)
as the base. In addition to transferring r0 to r7, PUSH can store the link register and POP

can load the program counter.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 2-11

Writing ARM and Thumb Assembly Language
2.3 Structure of assembly language modules

Assembly language is the language that the ARM assembler (armasm) parses and
assembles to produce object code. This can be:

• ARM assembly language

• Thumb assembly language

• a mixture of both.

2.3.1 Layout of assembly language source files

The general form of source lines in assembly language is:

{label} {instruction|directive|pseudo-instruction} {;comment}

Note

Instructions, pseudo-instructions, and directives must be preceded by white space, such
as a space or a tab, even if there is no label.

All three sections of the source line are optional. You can use blank lines to make your
code more readable.

Case rules

Instruction mnemonics, directives, and symbolic register names can be written in
uppercase or lowercase, but not mixed.

Line length

To make source files easier to read, a long line of source can be split onto several lines
by placing a backslash character (\) at the end of the line. The backslash must not be
followed by any other characters (including spaces and tabs). The backslash/end-of-line
sequence is treated by the assembler as white space.

Note
Do not use the backslash/end-of-line sequence within quoted strings.

The exact limit on the length of lines, including any extensions using backslashes,
depends on the contents of the line, but is generally between 128 and 255 characters.
2-12 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Writing ARM and Thumb Assembly Language
Labels

Labels are symbols that represent addresses. The address given by a label is calculated
during assembly.

The assembler calculates the address of a label relative to the origin of the section where
the label is defined. A reference to a label within the same section can use the program
counter plus or minus an offset. This is called program-relative addressing.

Labels can be defined in a map. See Describing data structures with MAP and FIELD
directives on page 2-50. You can place the origin of the map in a specified register at
runtime, and references to the label use the specified register plus an offset. This is
called register-relative addressing.

Addresses of labels in other sections are calculated at link time, when the linker has
allocated specific locations in memory for each section.

Local labels

Local labels are a subclass of label. A local label begins with a number in the range
0-99. Unlike other labels, a local label can be defined many times. Local labels are
useful when you are generating labels with a macro. When the assembler finds a
reference to a local label, it links it to a nearby instance of the local label.

The scope of local labels is limited by the AREA directive. You can use the ROUT directive
to limit the scope more tightly.

Refer to the Local labels on page 3-16 for details of:

• the syntax of local label declarations

• how the assembler associates references to local labels with their labels.

Comments

The first semicolon on a line marks the beginning of a comment, except where the
semicolon appears inside a string constant. The end of the line is the end of the
comment. A comment alone is a valid line. All comments are ignored by the assembler.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 2-13

Writing ARM and Thumb Assembly Language
Constants

Constants can be numeric, boolean, character or string:

Numbers Numeric constants are accepted in three forms:

• Decimal, for example, 123

• Hexadecimal, for example, 0x7B

• n_xxx where:

n is a base between 2 and 9

xxx is a number in that base.

Boolean The Boolean constants TRUE and FALSE must be written as {TRUE} and
{FALSE}.

Characters Character constants consist of opening and closing single quotes,
enclosing either a single character or an escaped character, using the
standard C escape characters.

Strings Strings consist of opening and closing double quotes, enclosing
characters and spaces. If double quotes or dollar signs are used within a
string as literal text characters, they must be represented by a pair of the
appropriate character. For example, you must use $$ if you require a
single $ in the string. The standard C escape sequences can be used within
string constants.
2-14 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Writing ARM and Thumb Assembly Language
2.3.2 An example ARM assembly language module

Example 2-1 illustrates some of the core constituents of an assembly language module.
The example is written in ARM assembly language. It is supplied as armex.s in the
examples\asm subdirectory of ADS. Refer to Code examples on page 2-2 for instructions
on how to assemble, link, and execute the example.

The constituent parts of this example are described in more detail in the following
sections.

Example 2-1

 AREA ARMex, CODE, READONLY
 ; Name this block of code ARMex
 ENTRY ; Mark first instruction to execute
start
 MOV r0, #10 ; Set up parameters
 MOV r1, #3
 ADD r0, r0, r1 ; r0 = r0 + r1
stop
 MOV r0, #0x18 ; angel_SWIreason_ReportException
 LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
 SWI 0x123456 ; ARM semihosting SWI

 END ; Mark end of file

ELF sections and the AREA directive

ELF sections are independent, named, indivisible sequences of code or data. A single
code section is the minimum required to produce an application.

The output of an assembly or compilation can include:

• One or more code sections. These are usually read-only sections.

• One or more data sections. These are usually read-write sections. They may be
zero initialized (ZI).

The linker places each section in a program image according to section placement rules.
Sections that are adjacent in source files are not necessarily adjacent in the application
image. Refer to the Linker chapter in ADS Compiler, Linker, and Utilities Guide for
more information on how the linker places sections.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 2-15

Writing ARM and Thumb Assembly Language
In an ARM assembly language source file, the start of a section is marked by the AREA

directive. This directive names the section and sets its attributes. The attributes are
placed after the name, separated by commas. Refer to AREA on page 7-50 for a detailed
description of the syntax of the AREA directive.

You can choose any name for your sections. However, names starting with any
nonalphabetic character must be enclosed in bars, or an AREA name missing error is
generated. For example: |1_DataArea|.

Example 2-1 defines a single section called ARMex that contains code and is marked as
being READONLY.

The ENTRY directive

The ENTRY directive marks the first instruction to be executed. In applications containing
C code, an entry point is also contained within the C library initialization code.
Initialization code and exception handlers also contain entry points.

Application execution

The application code in Example 2-1 begins executing at the label start, where it loads
the decimal values 10 and 3 into registers r0 and r1. These registers are added together
and the result placed in r0.

Application termination

After executing the main code, the application terminates by returning control to the
debugger. This is done using the ARM semihosting SWI (0x123456 by default), with
the following parameters:

• r0 equal to angel_SWIreason_ReportException (0x18)

• r1 equal to ADP_Stopped_ApplicationExit (0x20026).

Refer to the Semihosting SWIs chapter in ADS Debug Target Guide for additional
information.

The END directive

This directive instructs the assembler to stop processing this source file. Every assembly
language source module must finish with an END directive on a line by itself.
2-16 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Writing ARM and Thumb Assembly Language
2.3.3 Calling subroutines

To call subroutines, use a branch and link instruction. The syntax is:

 BL destination

where destination is usually the label on the first instruction of the subroutine.

destination can also be a program-relative or register-relative expression. Refer to B
and BL on page 4-57 for further information.

The BL instruction:

• places the return address in the link register (lr)

• sets pc to the address of the subroutine.

After the subroutine code is executed you can use a MOV pc,lr instruction to return. By
convention, registers r0 to r3 are used to pass parameters to subroutines, and to pass
results back to the callers.

Note
Calls between separately assembled or compiled modules must comply with the
restrictions and conventions defined by the procedure call standard. Refer to the Using
the Procedure Call Standard in ADS Developer Guide for more information.

Example 2-2 shows a subroutine that adds the values of its two parameters and returns
a result in r0. It is supplied as subrout.s in the examples\asm subdirectory of ADS. Refer
to Code examples on page 2-2 for instructions on how to assemble, link, and execute the
example.

Example 2-2

 AREA subrout, CODE, READONLY
 ; Name this block of code
 ENTRY ; Mark first instruction to execute
start MOV r0, #10 ; Set up parameters
 MOV r1, #3
 BL doadd ; Call subroutine
stop MOV r0, #0x18 ; angel_SWIreason_ReportException
 LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
 SWI 0x123456 ; ARM semihosting SWI

doadd ADD r0, r0, r1 ; Subroutine code
 MOV pc, lr ; Return from subroutine
 END ; Mark end of file
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 2-17

Writing ARM and Thumb Assembly Language
2.3.4 An example Thumb assembly language module

Example 2-3 illustrates some of the core constituents of a Thumb assembly language
module. It is based on subrout.s. It is supplied as thumbsub.s in the examples\asm

subdirectory of the ADS. Refer to Code examples on page 2-2 for instructions on how
to assemble, link, and execute the example.

Example 2-3

 AREA ThumbSub, CODE, READONLY ; Name this block of code
 ENTRY ; Mark first instruction to execute
 CODE32 ; Subsequent instructions are ARM
header ADR r0, start + 1 ; Processor starts in ARM state,
 BX r0 ; so small ARM code header used
 ; to call Thumb main program
 CODE16 ; Subsequent instructions are Thumb
start
 MOV r0, #10 ; Set up parameters
 MOV r1, #3
 BL doadd ; Call subroutine
stop
 MOV r0, #0x18 ; angel_SWIreason_ReportException
 LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
 SWI 0xAB ; Thumb semihosting SWI
doadd
 ADD r0, r0, r1 ; Subroutine code
 MOV pc, lr ; Return from subroutine
 END ; Mark end of file

CODE32 and CODE16 directives

These directives instruct the assembler to assemble subsequent instructions as ARM
(CODE32) or Thumb (CODE16) instructions. They do not assemble to an instruction to
change the processor state at runtime. They only change the assembler state.

The ARM assembler, armasm, starts in ARM mode by default. You can use the -16 option
in the command line if you want it to start in Thumb mode.

BX instruction

This instruction is a branch that can change processor state at runtime. The least
significant bit of the target address specifies whether it is an ARM instruction (clear) or
a Thumb instruction (set). In this example, this bit is set in the ADR pseudo-instruction.
2-18 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Writing ARM and Thumb Assembly Language
2.4 Conditional execution

In ARM state, each data processing instruction has an option to update ALU status flags
in the Current Program Status Register (CPSR) according to the result of the operation.

Add an S suffix to an ARM data processing instruction to make it update the ALU status
flags in the CPSR.

Do not use the S suffix with CMP, CMN, TST, or TEQ. These comparison instructions always
update the flags. This is their only effect.

In Thumb state, there is no option. All data processing instructions update the ALU
status flags in the CPSR, except when one or more high registers are used in MOV and ADD

instructions. MOV and ADD cannot update the status flags in these cases.

Almost every ARM instruction can be executed conditionally on the state of the ALU
status flags in the CPSR. Refer to Table 2-1 on page 2-20 for a list of the suffixes to add
to instructions to make them conditional.

In ARM state, you can:

• update the ALU status flags in the CPSR on the result of a data operation

• execute several other data operations without updating the flags

• execute following instructions or not, according to the state of the flags updated
in the first operation.

In Thumb state, most data operations always update the flags, and conditional execution
can only be achieved using the conditional branch instruction (B). The suffixes for this
instruction are the same as in ARM state. No other instruction can be conditional.

2.4.1 The ALU status flags

The CPSR contains the following ALU status flags:

N Set when the result of the operation was Negative.

Z Set when the result of the operation was Zero.

C Set when the operation resulted in a Carry.

V Set when the operation caused oVerflow.

Q ARM architecture v5E only. Sticky flag (see The Q flag on page 4-5).

A carry occurs if the result of an addition is greater than or equal to 232, if the result of
a subtraction is positive, or as the result of an inline barrel shifter operation in a move
or logical instruction.

Overflow occurs if the result of an add, subtract, or compare is greater than or equal to
231, or less than –231.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 2-19

Writing ARM and Thumb Assembly Language
2.4.2 Execution conditions

The relation of condition code suffixes to the N, Z, C and V flags is shown in Table 2-1.

Examples

 ADD r0, r1, r2 ; r0 = r1 + r2, don't update flags

 ADDS r0, r1, r2 ; r0 = r1 + r2, and update flags

 ADDCSS r0, r1, r2 ; If C flag set then r0 = r1 + r2, and update flags

 CMP r0, r1 ; update flags based on r0-r1.

Table 2-1 Condition code suffixes

Suffix Flags Meaning

EQ Z set Equal

NE Z clear Not equal

CS/HS C set Higher or same (unsigned >=)

CC/LO C clear Lower (unsigned <)

MI N set Negative

PL N clear Positive or zero

VS V set Overflow

VC V clear No overflow

HI C set and Z clear Higher (unsigned >)

LS C clear or Z set Lower or same (unsigned <=)

GE N and V the same Signed >=

LT N and V differ Signed <

GT Z clear, N and V the same Signed >

LE Z set, N and V differ Signed <=

AL Any Always. This suffix is normally omitted.
2-20 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Writing ARM and Thumb Assembly Language
2.4.3 Using conditional execution in ARM state

You can use conditional execution of ARM instructions to reduce the number of branch
instructions in your code. This improves code density.

Branch instructions are also expensive in processor cycles. On ARM processors without
branch prediction hardware, it typically takes three processor cycles to refill the
processor pipeline each time a branch is taken.

Some ARM processors, for example ARM10™ and StrongARM®, have branch
prediction hardware. In systems using these processors, the pipeline only needs to be
flushed and refilled when there is a misprediction.

2.4.4 Example of the use of conditional execution

This example uses two implementations of Euclid’s Greatest Common Divisor (gcd)
algorithm. It demonstrates how you can use conditional execution to improve code
density and execution speed. The detailed analysis of execution speed only applies to
an ARM7™ processor. The code density calculations apply to all ARM processors.

In C the algorithm can be expressed as:

int gcd(int a, int b)
{
 while (a != b) do
 {
 if (a > b)
 a = a - b;
 else
 b = b - a;
 }
 return a;
}

You can implement the gcd function with conditional execution of branches only, in the
following way:

gcd CMP r0, r1
 BEQ end
 BLT less
 SUB r0, r0, r1
 B gcd
less
 SUB r1, r1, r0
 B gcd
end
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 2-21

Writing ARM and Thumb Assembly Language
Because of the number of branches, the code is seven instructions long. Every time a
branch is taken, the processor must refill the pipeline and continue from the new
location. The other instructions and non-executed branches use a single cycle each.

By using the conditional execution feature of the ARM instruction set, you can
implement the gcd function in only four instructions:

gcd
 CMP r0, r1
 SUBGT r0, r0, r1
 SUBLT r1, r1, r0
 BNE gcd

In addition to improving code size, this code executes faster in most cases. Table 2-2
and Table 2-3 show the number of cycles used by each implementation for the case
where r0 equals 1 and r1 equals 2. In this case, replacing branches with conditional
execution of all instructions saves three cycles.

The conditional version of the code executes in the same number of cycles for any case
where r0 equals r1. In all other cases, the conditional version of the code executes in
fewer cycles.

Table 2-2 Conditional branches only

r0: a r1: b Instruction Cycles (ARM7)

1 2 CMP r0, r1 1

1 2 BEQ end 1 (not executed)

1 2 BLT less 3

1 2 SUB r1, r1, r0 1

1 2 B gcd 3

1 1 CMP r0, r1 1

1 1 BEQ end 3

Total = 13
2-22 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Writing ARM and Thumb Assembly Language
Converting to Thumb

Because B is the only Thumb instruction that can be executed conditionally, the gcd
algorithm must be written with conditional branches in Thumb code.

Like the ARM conditional branch implementation, the Thumb code requires seven
instructions. However, because Thumb instructions are only 16 bits long, the overall
code size is 14 bytes, compared to 16 bytes for the smaller ARM implementation.

In addition, on a system using 16-bit memory the Thumb version runs faster than the
second ARM implementation because only one memory access is required for each
Thumb instruction, whereas each ARM instruction requires two fetches.

Branch prediction and caches

To optimize code for execution speed you need detailed knowledge of the instruction
timings, branch prediction logic, and cache behavior of your target system. Refer to
ARM Architecture Reference Manual and data sheets for individual processors for full
information.

Table 2-3 All instructions conditional

r0: a r1: b Instruction Cycles (ARM7)

1 2 CMP r0, r1 1

1 2 SUBGT r0,r0,r1 1 (not executed)

1 1 SUBLT r1,r1,r0 1

1 1 BNE gcd 3

1 1 CMP r0,r1 1

1 1 SUBGT r0,r0,r1 1 (not executed)

1 1 SUBLT r1,r1,r0 1 (not executed)

1 1 BNE gcd 1 (not executed)

Total = 10
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 2-23

Writing ARM and Thumb Assembly Language
2.5 Loading constants into registers

You cannot load an arbitrary 32-bit immediate constant into a register in a single
instruction without performing a data load from memory. This is because ARM
instructions are only 32 bits long.

Thumb instructions have a similar limitation.

You can load any 32-bit value into a register with a data load, but there are more direct
and efficient ways to load many commonly-used constants. You can also include many
commonly-used constants directly as operands within data-processing instructions,
without a separate load operation at all.

The following sections describe:

• how to use the MOV and MVN instructions to load a range of immediate values, see
Direct loading with MOV and MVN on page 2-25

• how to use the LDR pseudo-instruction to load any 32-bit constant, see Loading
with LDR Rd, =const on page 2-26

• how to load floating-point constants, see Loading floating-point constants on
page 2-28.
2-24 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Writing ARM and Thumb Assembly Language
2.5.1 Direct loading with MOV and MVN

In ARM state, you can use the MOV and MVN instructions to load a range of 8-bit constant
values directly into a register:

• MOV can load any 8-bit constant value, giving a range of 0x0 to 0xFF (0-255).

It can also rotate these values by any even number. Table 2-4 shows the range of
values that this provides.

• MVN can load the bitwise complement of these values. The numerical values are
-(n+1), where n are the values given in Table 2-4.

You do not need to calculate the necessary rotation. The assembler performs the
calculation for you.

You do not need to decide whether to use MOV or MVN. The assembler uses whichever is
appropriate. This is useful if the value is an assembly-time variable.

If you write an instruction with a constant that cannot be constructed, the assembler
reports the error:

Immediate n out of range for this operation.

The range of values shown in Table 2-4 can also be used as one of the operands in
data-processing operations. You cannot use their bitwise complements as operands, and
you cannot use them as operands in multiplication operations.

Table 2-4 ARM-state immediate constants

Rotate Binary Decimal Step Hexadecimal

No rotate 000000000000000000000000xxxxxxxx 0-255 1 0-0xFF

Right, 30 bits 0000000000000000000000xxxxxxxx00 0-1020 4 0-0x3FC

Right, 28 bits 00000000000000000000xxxxxxxx0000 0-4080 16 0-0xFF0

Right, 26 bits 000000000000000000xxxxxxxx000000 0-16320 64 0-0x3FC0

...

Right, 8 bits xxxxxxxx000000000000000000000000 0-255 x 224 224 0-0xFF000000

Right, 6 bits xxxxxx000000000000000000000000xx - - -

Right, 4 bits xxxx000000000000000000000000xxxx - - -

Right, 2 bits xx000000000000000000000000xxxxxx - - -
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 2-25

Writing ARM and Thumb Assembly Language
Direct loading with MOV in Thumb state

In Thumb state you can use the MOV instruction to load constants in the range 0-255. You
cannot generate constants outside this range because:

• The Thumb MOV instruction does not provide inline access to the barrel shifter.
Constants cannot be right-rotated as they can in ARM state.

• The Thumb MVN instruction can act only on registers and not on constant values.
Bitwise complements cannot be directly loaded as they can in ARM state.

If you attempt to use a MOV instruction with a value outside the range 0-255, the
assembler reports the error:

Immediate n out of range for this operation.

2.5.2 Loading with LDR Rd, =const

The LDR Rd,=const pseudo-instruction can construct any 32-bit numeric constant in a
single instruction. Use this pseudo-instruction to generate constants that are out of range
of the MOV and MVN instructions.

The LDR pseudo-instruction generates the most efficient code for a specific constant:

• If the constant can be constructed with a MOV or MVN instruction, the assembler
generates the appropriate instruction.

• If the constant cannot be constructed with a MOV or MVN instruction, the assembler:

— places the value in a literal pool (a portion of memory embedded in the code
to hold constant values)

— generates an LDR instruction with a program-relative address that reads the
constant from the literal pool.

For example:

 LDR rn, [pc, #offset to literal pool]
 ; load register n with one word
 ; from the address [pc + offset]

You must ensure that there is a literal pool within range of the LDR instruction
generated by the assembler. Refer to Placing literal pools for more information.

Refer to LDR ARM pseudo-instruction on page 4-80 for a description of the syntax of
the LDR pseudo-instruction.
2-26 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Writing ARM and Thumb Assembly Language
Placing literal pools

The assembler places a literal pool at the end of each section. These are defined by the
AREA directive at the start of the following section, or by the END directive at the end of
the assembly. The END directive at the end of an included file does not signal the end of
a section.

In large sections the default literal pool can be out of range of one or more LDR

instructions. The offset from the pc to the constant must be:

• less than 4KB in ARM state, but can be in either direction

• forward and less than 1KB in Thumb state.

When an LDR Rd,=const pseudo-instruction requires the constant to be placed in a literal
pool, the assembler:

• Checks if the constant is available and addressable in any previous literal pools.
If so, it addresses the existing constant.

• Attempts to place the constant in the next literal pool if it is not already available.

If the next literal pool is out of range, the assembler generates an error message. In this
case you must use the LTORG directive to place an additional literal pool in the code. Place
the LTORG directive after the failed LDR pseudo-instruction, and within 4KB (ARM) or
1KB (Thumb). Refer to LTORG on page 7-13 for a detailed description.

You must place literal pools where the processor does not attempt to execute them as
instructions. Place them after unconditional branch instructions, or after the return
instruction at the end of a subroutine.

Example 2-4 on page 2-28 shows how this works in practice. It is supplied as loadcon.s

in the examples\asm subdirectory of the ADS. The instructions listed as comments are
the ARM instructions that are generated by the assembler. Refer to Code examples on
page 2-2 for instructions on how to assemble, link, and execute the example.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 2-27

Writing ARM and Thumb Assembly Language
Example 2-4

 AREA Loadcon, CODE, READONLY
 ENTRY ; Mark first instruction to execute
start BL func1 ; Branch to first subroutine
 BL func2 ; Branch to second subroutine
stop MOV r0, #0x18 ; angel_SWIreason_ReportException
 LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
 SWI 0x123456 ; ARM semihosting SWI
func1
 LDR r0, =42 ; => MOV R0, #42
 LDR r1, =0x55555555 ; => LDR R1, [PC, #offset to
 ; Literal Pool 1]
 LDR r2, =0xFFFFFFFF ; => MVN R2, #0
 MOV pc, lr
 LTORG ; Literal Pool 1 contains
 ; literal Ox55555555
func2
 LDR r3, =0x55555555 ; => LDR R3, [PC, #offset to
 ; Literal Pool 1]
 ; LDR r4, =0x66666666 ; If this is uncommented it
 ; fails, because Literal Pool 2
 ; is out of reach
 MOV pc, lr
LargeTable
 SPACE 4200 ; Starting at the current location,
 ; clears a 4200 byte area of memory
 ; to zero
 END ; Literal Pool 2 is empty

2.5.3 Loading floating-point constants

You can load any single-precision or double-precision floating-point constant in a single
instruction, using the FLD pseudo-instructions.

Refer to VFP pseudo-instruction on page 6-34 for details.
2-28 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Writing ARM and Thumb Assembly Language
2.6 Loading addresses into registers

It is often necessary to load an address into a register. You might need to load the address
of a variable, a string constant, or the start location of a jump table.

Addresses are normally expressed as offsets from the current pc or other register.

This section describes two methods for loading an address into a register:

• load the register directly, see Direct loading with ADR and ADRL.

• load the address from a literal pool, see Loading addresses with LDR Rd, = label
on page 2-34.

2.6.1 Direct loading with ADR and ADRL

The ADR and ADRL pseudo-instructions enable you to generate an address, within a certain
range, without performing a data load. ADR and ADRL accept either of the following:

• A program-relative expression, which is a label with an optional offset, where the
address of the label is relative to the current pc.

• A register-relative expression, which is a label with an optional offset, where the
address of the label is relative to an address held in a specified general-purpose
register. Refer to Describing data structures with MAP and FIELD directives on
page 2-50 for information on specifying register-relative expressions.

The assembler converts an ADR rn,label pseudo-instruction by generating:

• a single ADD or SUB instruction that loads the address, if it is in range

• an error message if the address cannot be reached in a single instruction.

The offset range is ±255 bytes for an offset to a non word-aligned address, and ±1020
bytes (255 words) for an offset to a word-aligned address. (For Thumb, the address must
be word aligned, and the offset must be positive.)

The assembler converts an ADRL rn,label pseudo-instruction by generating:

• two data-processing instructions that load the address, if it is in range

• an error message if the address cannot be constructed in two instructions.

The range of an ADRL pseudo-instruction is ±64KB for a non word-aligned address and
±256KB for a word-aligned address. (There is no ADRL pseudo-instruction for Thumb.)

ADRL assembles to two instructions, if successful. The assembler generates two
instructions even if the address could be loaded in a single instruction.

Refer to Loading addresses with LDR Rd, = label on page 2-34 for information on
loading addresses that are outside the range of the ADRL pseudo-instruction.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 2-29

Writing ARM and Thumb Assembly Language
Note
The label used with ADR or ADRL must be within the same code section. The assembler
faults references to labels that are out of range in the same section. The linker faults
references to labels that are out of range in other code sections.

In Thumb state, ADR can generate word-aligned addresses only.

ADRL is not available in Thumb code. Use it only in ARM code.

Example 2-5 shows the type of code generated by the assembler when assembling ADR

and ADRL pseudo-instructions. It is supplied as adrlabel.s in the examples\asm

subdirectory of the ADS. Refer to Code examples on page 2-2 for instructions on how
to assemble, link, and execute the example.

The instructions listed in the comments are the ARM instructions generated by the
assembler.

Example 2-5

 AREA adrlabel, CODE,READONLY
 ENTRY ; Mark first instruction to execute
Start
 BL func ; Branch to subroutine
stop MOV r0, #0x18 ; angel_SWIreason_ReportException
 LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
 SWI 0x123456 ; ARM semihosting SWI
 LTORG ; Create a literal pool
func ADR r0, Start ; => SUB r0, PC, #offset to Start
 ADR r1, DataArea ; => ADD r1, PC, #offset to DataArea
 ; ADR r2, DataArea+4300 ; This would fail because the offset
 ; cannot be expressed by operand2
 ; of an ADD
 ADRL r2, DataArea+4300 ; => ADD r2, PC, #offset1
 ; ADD r2, r2, #offset2
 MOV pc, lr ; Return
DataArea SPACE 8000 ; Starting at the current location,
 ; clears a 8000 byte area of memory
 ; to zero
 END
2-30 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Writing ARM and Thumb Assembly Language
Implementing a jump table with ADR

Example 2-6 on page 2-32 shows ARM code that implements a jump table. It is
supplied as jump.s in the examples\asm subdirectory of ADS. Refer to Code examples on
page 2-2 for instructions on how to assemble, link, and execute the example.

The ADR pseudo-instruction loads the address of the jump table.

In the example, the function arithfunc takes three arguments and returns a result in r0.
The first argument determines which operation is carried out on the second and third
arguments:

argument1=0 Result = argument2 + argument3.

argument1=1 Result = argument2 – argument3.

The jump table is implemented with the following instructions and assembler
directives:

EQU Is an assembler directive. It is used to give a value to a symbol. In this
example it assigns the value 2 to num. When num is used elsewhere in the
code, the value 2 is substituted. Using EQU in this way is similar to using
#define to define a constant in C.

DCD Declares one or more words of store. In this example each DCD stores the
address of a routine that handles a particular clause of the jump table.

LDR The LDR pc,[r3,r0,LSL#2] instruction loads the address of the required
clause of the jump table into the pc. It:

• multiplies the clause number in r0 by 4 to give a word offset

• adds the result to the address of the jump table

• loads the contents of the combined address into the program
counter.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 2-31

Writing ARM and Thumb Assembly Language
Example 2-6 ARM code jump table

 AREA Jump, CODE, READONLY ; Name this block of code
 CODE32 ; Following code is ARM code
num EQU 2 ; Number of entries in jump table
 ENTRY ; Mark first instruction to execute
start ; First instruction to call
 MOV r0, #0 ; Set up the three parameters
 MOV r1, #3
 MOV r2, #2
 BL arithfunc ; Call the function
stop MOV r0, #0x18 ; angel_SWIreason_ReportException
 LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
 SWI 0x123456 ; ARM semihosting SWI
arithfunc ; Label the function
 CMP r0, #num ; Treat function code as unsigned integer
 MOVHS pc, lr ; If code is >= num then simply return
 ADR r3, JumpTable ; Load address of jump table
 LDR pc, [r3,r0,LSL#2] ; Jump to the appropriate routine
JumpTable
 DCD DoAdd
 DCD DoSub

DoAdd ADD r0, r1, r2 ; Operation 0
 MOV pc, lr ; Return
DoSub SUB r0, r1, r2 ; Operation 1
 MOV pc, lr ; Return
 END ; Mark the end of this file
2-32 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Writing ARM and Thumb Assembly Language
Converting to Thumb

Example 2-7 shows the implementation of the jump table converted to Thumb code.

Most of the Thumb version is the same as the ARM code. The differences are
commented in the Thumb version.

In Thumb state, you cannot:

• increment the base register of LDR and STR instructions

• load a value into the pc using an LDR instruction

• do an inline shift of a value held in a register.

Example 2-7 Thumb code jump table

 AREA Jump, CODE, READONLY
 CODE16 ; Following code is Thumb code
num EQU 2
 ENTRY
start
 MOV r0, #0
 MOV r1, #3
 MOV r2, #2
 BL arithfunc
stop MOV r0, #0x18
 LDR r1, =0x20026
 SWI 0xAB ; Thumb semihosting SWI
arithfunc
 CMP r0, #num
 BHS exit ; MOV pc, lr cannot be conditional
 ADR r3, JumpTable
 LSL r0, r0, #2 ; 3 instructions needed to replace
 LDR r0, [r3,r0] ; LDR pc, [r3,r0,LSL#2]
 MOV pc, r0
 ALIGN ; Ensure that the table is aligned on a
 ; 4-byte boundary
JumpTable
 DCD DoAdd
 DCD DoSub

DoAdd ADD r0, r1, r2
exit MOV pc, lr
DoSub SUB r0, r1, r2
 MOV pc, lr
 END
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 2-33

Writing ARM and Thumb Assembly Language
2.6.2 Loading addresses with LDR Rd, = label

The LDR Rd,= pseudo-instruction can load any 32-bit constant into a register. See
Loading with LDR Rd, =const on page 2-26. It also accepts program-relative
expressions such as labels, and labels with offsets.

The assembler converts an LDR r0,=label pseudo-instruction by:

• Placing the address of label in a literal pool (a portion of memory embedded in
the code to hold constant values).

• Generating a program-relative LDR instruction that reads the address from the
literal pool, for example:

 LDR rn [pc, #offset to literal pool]
 ; load register n with one word
 ; from the address [pc + offset]

You must ensure that there is a literal pool within range. Refer to Placing literal
pools on page 2-27 for more information.

Unlike the ADR and ADRL pseudo-instructions, you can use LDR with labels that are outside
the current section. If the label is outside the current section, the assembler places a
relocation directive in the object code when the source file is assembled. The relocation
directive instructs the linker to resolve the address at link time. The address remains
valid wherever the linker places the section containing the LDR and the literal pool.

Example 2-8 on page 2-35 shows how this works. It is supplied as ldrlabel.s in the
examples\asm subdirectory of the ADS. Refer to Code examples on page 2-2 for
instructions on how to assemble, link, and execute the example.

The instructions listed in the comments are the ARM instructions that are generated by
the assembler.
2-34 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Writing ARM and Thumb Assembly Language
Example 2-8

 AREA LDRlabel, CODE,READONLY
 ENTRY ; Mark first instruction to execute
start
 BL func1 ; Branch to first subroutine
 BL func2 ; Branch to second subroutine
stop MOV r0, #0x18 ; angel_SWIreason_ReportException
 LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
 SWI 0x123456 ; ARM semihosting SWI
func1
 LDR r0, =start ; => LDR R0,[PC, #offset into
 ; Literal Pool 1]
 LDR r1, =Darea + 12 ; => LDR R1,[PC, #offset into
 ; Literal Pool 1]
 LDR r2, =Darea + 6000 ; => LDR R2, [PC, #offset into
 ; Literal Pool 1]
 MOV pc,lr ; Return
 LTORG ; Literal Pool 1
func2
 LDR r3, =Darea + 6000 ; => LDR r3, [PC, #offset into
 ; Literal Pool 1]
 ; (sharing with previous literal)
 ; LDR r4, =Darea + 6004 ; If uncommented produces an error
 ; as Literal Pool 2 is out of range
 MOV pc, lr ; Return
Darea SPACE 8000 ; Starting at the current location,
 ; clears a 8000 byte area of memory
 ; to zero
 END ; Literal Pool 2 is out of range of
 ; the LDR instructions above
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 2-35

Writing ARM and Thumb Assembly Language
An LDR Rd, =label example: string copying

Example 2-9 on page 2-36 shows an ARM code routine that overwrites one string with
another string. It uses the LDR pseudo-instruction to load the addresses of the two strings
from a data section. The following are particularly significant:

DCB The DCB directive defines one or more bytes of store. In addition to integer
values, DCB accepts quoted strings. Each character of the string is placed
in a consecutive byte. Refer to DCB on page 7-17 for more information.

LDR/STR The LDR and STR instructions use post-indexed addressing to update their
address registers. For example, the instruction:

LDRB r2,[r1],#1

loads r2 with the contents of the address pointed to by r1 and then
increments r1 by 1.

Example 2-9 String copy

 AREA StrCopy, CODE, READONLY
 ENTRY ; Mark first instruction to execute
start LDR r1, =srcstr ; Pointer to first string
 LDR r0, =dststr ; Pointer to second string
 BL strcopy ; Call subroutine to do copy
stop MOV r0, #0x18 ; angel_SWIreason_ReportException
 LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
 SWI 0x123456 ; ARM semihosting SWI
strcopy
 LDRB r2, [r1],#1 ; Load byte and update address
 STRB r2, [r0],#1 ; Store byte and update address
 CMP r2, #0 ; Check for zero terminator
 BNE strcopy ; Keep going if not
 MOV pc,lr ; Return

 AREA Strings, DATA, READWRITE
srcstr DCB "First string - source",0
dststr DCB "Second string - destination",0
 END
2-36 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Writing ARM and Thumb Assembly Language
Converting to Thumb

There is no post-indexed addressing mode for Thumb LDR and STR instructions. Because
of this, you must use an ADD instruction to increment the address register after the LDR

and STR instructions. For example:

 LDRB r2, [r1] ; load register 2
 ADD r1, #1 ; increment the address in
 ; register 1.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 2-37

Writing ARM and Thumb Assembly Language
2.7 Load and store multiple register instructions

The ARM and Thumb instruction sets include instructions that load and store multiple
registers to and from memory.

Multiple register transfer instructions provide an efficient way of moving the contents
of several registers to and from memory. They are most often used for block copy and
for stack operations at subroutine entry and exit. The advantages of using a multiple
register transfer instruction instead of a series of single data transfer instructions
include:

• Smaller code size.

• A single instruction fetch overhead, rather than many instruction fetches.

• On uncached ARM processors, the first word of data transferred by a load or store
multiple is always a nonsequential memory cycle, but all subsequent words
transferred can be sequential memory cycles. Sequential memory cycles are faster
in most systems.

Note

The lowest numbered register is transferred to or from the lowest memory address
accessed, and the highest numbered register to or from the highest address accessed.
The order of the registers in the register list in the instructions makes no difference.

Use the -checkreglist assembler command line option to check that registers in register
lists are specified in increasing order. Refer to Command syntax on page 3-2 for further
information.
2-38 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Writing ARM and Thumb Assembly Language
2.7.1 ARM LDM and STM instructions

The load (or store) multiple instruction loads (stores) any subset of the 16
general-purpose registers from (to) memory, using a single instruction.

Syntax

The syntax of the LDM instructions is:

LDM{cond}address-mode Rn{!},reg-list{^}

where:

cond is an optional condition code. Refer to Conditional execution on
page 2-19 for more information.

address-mode

specifies the addressing mode of the instruction. Refer to LDM and STM
addressing modes on page 2-40 for details.

Rn is the base register for the load operation. The address stored in this
register is the starting address for the load operation. Do not specify r15
(pc) as the base register.

! specifies base register write back. If this is specified, the address in the
base register is updated after the transfer. It is decremented or
incremented by one word for each register in the register list.

register-list

is a comma-delimited list of symbolic register names and register ranges
enclosed in braces. There must be at least one register in the list. Register
ranges are specified with a dash. For example:

{r0,r1,r4-r6,pc}

Do not specify writeback if the base register Rn is in register-list.

^ You must not use this option in User or System mode. For details of its
use in privileged modes, see the Handling Processor Exceptions chapter
in ADS Developer Guide and LDM and STM on page 4-18.

The syntax of the STM instruction corresponds exactly, except for some details in the
effect of the ^ option.

Usage

See Implementing stacks with LDM and STM on page 2-41 and Block copy with LDM
and STM on page 2-43.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 2-39

Writing ARM and Thumb Assembly Language
2.7.2 LDM and STM addressing modes

There are four different addressing modes. The base register can be incremented or
decremented by one word for each register in the operation, and the increment or
decrement can occur before or after the operation. The suffixes for these options are:

IA Increment after.

IB Increment before.

DA Decrement after.

DB Decrement before.

There are alternative addressing mode suffixes that are easier to use for stack operations.
See Implementing stacks with LDM and STM on page 2-41.
2-40 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Writing ARM and Thumb Assembly Language
2.7.3 Implementing stacks with LDM and STM

The load and store multiple instructions can update the base register. For stack
operations, the base register is usually the stack pointer, r13. This means that you can
use load and store multiple instructions to implement push and pop operations for any
number of registers in a single instruction.

The load and store multiple instructions can be used with several types of stack:

Descending or ascending

The stack grows downwards, starting with a high address and progressing
to a lower one (a descending stack), or upwards, starting from a low
address and progressing to a higher address (an ascending stack).

Full or empty

The stack pointer can either point to the last item in the stack (a full
stack), or the next free space on the stack (an empty stack).

To make it easier for the programmer, stack-oriented suffixes can be used instead of the
increment or decrement and before or after suffixes. Refer to Table 2-5 for a list of
stack-oriented suffixes.

For example:

 STMFD r13!, {r0-r5} ; Push onto a Full Descending Stack
 LDMFD r13!, {r0-r5} ; Pop from a Full Descending Stack.

Note

The ARM-Thumb Procedure Call Standard (ATPCS), and ARM and Thumb C and C++
compilers always use a full descending stack.

Table 2-5 Suffixes for load and store multiple instructions

Stack type Push Pop

Full descending STMFD (STMDB) LDMFD (LDMIA)

Full ascending STMFA (STMIB) LDMFA (LDMDA)

Empty descending STMED (STMDA) LDMED (LDMIB)

Empty ascending STMEA (STMIA) LDMEA (LDMDB)
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 2-41

Writing ARM and Thumb Assembly Language
Stacking registers for nested subroutines

Stack operations are very useful at subroutine entry and exit. At the start of a subroutine,
any working registers required can be stored on the stack, and at exit they can be popped
off again.

In addition, if the link register is pushed onto the stack at entry, additional subroutine
calls can safely be made without causing the return address to be lost. If you do this, you
can also return from a subroutine by popping the pc off the stack at exit, instead of
popping lr and then moving that value into the pc. For example:

subroutine STMFD sp!, {r5-r7,lr} ; Push work registers and lr
 ; code
 BL somewhere_else
 ; code
 LDMFD sp!, {r5-r7,pc} ; Pop work registers and pc

Note

Use this with care in mixed ARM and Thumb systems. In ARM architecture v4T
systems, you cannot change state by popping directly into the program counter.

In ARM architecture v5T and above, you can change state in this way.

See the Interworking ARM and Thumb chapter in ADS Developer Guide for further
information on mixing ARM and Thumb.
2-42 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Writing ARM and Thumb Assembly Language
2.7.4 Block copy with LDM and STM

Example 2-10 is an ARM code routine that copies a set of words from a source location
to a destination by copying a single word at a time. It is supplied as word.s in the
examples\asm subdirectory of the ADS. Refer to Code examples on page 2-2 for
instructions on how to assemble, link, and execute the example.

Example 2-10 Block copy

 AREA Word, CODE, READONLY ; name this block of code
num EQU 20 ; set number of words to be copied
 ENTRY ; mark the first instruction to call
start
 LDR r0, =src ; r0 = pointer to source block
 LDR r1, =dst ; r1 = pointer to destination block
 MOV r2, #num ; r2 = number of words to copy
wordcopy LDR r3, [r0], #4 ; load a word from the source and
 STR r3, [r1], #4 ; store it to the destination
 SUBS r2, r2, #1 ; decrement the counter
 BNE wordcopy ; ... copy more
stop MOV r0, #0x18 ; angel_SWIreason_ReportException
 LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
 SWI 0x123456 ; ARM semihosting SWI

 AREA BlockData, DATA, READWRITE
src DCD 1,2,3,4,5,6,7,8,1,2,3,4,5,6,7,8,1,2,3,4
dst DCD 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
 END

This module can be made more efficient by using LDM and STM for as much of the copying
as possible. Eight is a sensible number of words to transfer at a time, given the number
of registers that the ARM has. The number of eight-word multiples in the block to be
copied can be found (if r2 = number of words to be copied) using:

 MOVS r3, r2, LSR #3 ; number of eight word multiples

This value can be used to control the number of iterations through a loop that copies
eight words per iteration. When there are less than eight words left, the number of words
left can be found (assuming that r2 has not been corrupted) using:

 ANDS r2, r2, #7

Example 2-11 on page 2-44 lists the block copy module rewritten to use LDM and STM for
copying.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 2-43

Writing ARM and Thumb Assembly Language
Example 2-11

 AREA Block, CODE, READONLY ; name this block of code
num EQU 20 ; set number of words to be copied
 ENTRY ; mark the first instruction to call
start
 LDR r0, =src ; r0 = pointer to source block
 LDR r1, =dst ; r1 = pointer to destination block
 MOV r2, #num ; r2 = number of words to copy
 MOV sp, #0x400 ; Set up stack pointer (r13)
blockcopy MOVS r3,r2, LSR #3 ; Number of eight word multiples
 BEQ copywords ; Less than eight words to move?
 STMFD sp!, {r4-r11} ; Save some working registers
octcopy LDMIA r0!, {r4-r11} ; Load 8 words from the source
 STMIA r1!, {r4-r11} ; and put them at the destination
 SUBS r3, r3, #1 ; Decrement the counter
 BNE octcopy ; ... copy more
 LDMFD sp!, {r4-r11} ; Don't need these now - restore
 ; originals
copywords ANDS r2, r2, #7 ; Number of odd words to copy
 BEQ stop ; No words left to copy?
wordcopy LDR r3, [r0], #4 ; Load a word from the source and
 STR r3, [r1], #4 ; store it to the destination
 SUBS r2, r2, #1 ; Decrement the counter
 BNE wordcopy ; ... copy more
stop MOV r0, #0x18 ; angel_SWIreason_ReportException
 LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
 SWI 0x123456 ; ARM semihosting SWI

 AREA BlockData, DATA, READWRITE
src DCD 1,2,3,4,5,6,7,8,1,2,3,4,5,6,7,8,1,2,3,4
dst DCD 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
 END
2-44 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Writing ARM and Thumb Assembly Language
2.7.5 Thumb LDM and STM instructions

The Thumb instruction set contains two pairs of multiple-register transfer instructions:

• LDM and STM for block memory transfers

• PUSH and POP for stack operations.

LDM and STM

These instructions can be used to load or store any subset of the low registers from or
to memory. The base register is always updated at the end of the multiple register
transfer instruction. You must specify the ! character. The only valid suffix for these
instructions is IA.

Examples of these instructions are:

 LDMIA r1!, {r0,r2-r7}
 STMIA r4!, {r0-r3}

PUSH and POP

These instructions can be used to push any subset of the low registers and (optionally)
the link register onto the stack, and to pop any subset of the low registers and
(optionally) the pc off the stack. The base address of the stack is held in r13. Examples
of these instructions are:

 PUSH {r0-r3}
 POP {r0-r3}
 PUSH {r4-r7,lr}
 POP {r4-r7,pc}

The optional addition of the lr or pc to the register list provides support for subroutine
entry and exit.

The stack is always full descending.

Thumb-state block copy example

The block copy example, Example 2-10 on page 2-43, can be converted into Thumb
instructions (see Example 2-12 on page 2-46).

Because the Thumb LDM and STM instructions can access only the low registers, the
number of words copied per iteration is reduced from eight to four. In addition, the LDM

and STM instructions can be used to carry out the single word at a time copy, because they
update the base pointer after each access. If LDR and STR were used for this, separate ADD

instructions would be required to update each base pointer.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 2-45

Writing ARM and Thumb Assembly Language
Example 2-12

 AREA Tblock, CODE, READONLY ; Name this block of code
num EQU 20 ; Set number of words to be copied
 ENTRY ; Mark first instruction to execute
header ; The first instruction to call
 MOV sp, #0x400 ; Set up stack pointer (r13)
 ADR r0, start + 1 ; Processor starts in ARM state,
 BX r0 ; so small ARM code header used
 ; to call Thumb main program
 CODE16 ; Subsequent instructions are Thumb
start
 LDR r0, =src ; r0 =pointer to source block
 LDR r1, =dst ; r1 =pointer to destination block
 MOV r2, #num ; r2 =number of words to copy
blockcopy
 LSR r3,r2, #2 ; Number of four word multiples
 BEQ copywords ; Less than four words to move?
 PUSH {r4-r7} ; Save some working registers
quadcopy
 LDMIA r0!, {r4-r7} ; Load 4 words from the source
 STMIA r1!, {r4-r7} ; and put them at the destination
 SUB r3, #1 ; Decrement the counter
 BNE quadcopy ; ... copy more
 POP {r4-r7} ; Don't need these now-restore originals
copywords
 MOV r3, #3 ; Bottom two bits represent number
 AND r2, r3 ; ...of odd words left to copy
 BEQ stop ; No words left to copy?
wordcopy
 LDMIA r0!, {r3} ; load a word from the source and
 STMIA r1!, {r3} ; store it to the destination
 SUB r2, #1 ; Decrement the counter
 BNE wordcopy ; ... copy more
stop MOV r0, #0x18 ; angel_SWIreason_ReportException
 LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
 SWI 0xAB ; Thumb semihosting SWI

 AREA BlockData, DATA, READWRITE
src DCD 1,2,3,4,5,6,7,8,1,2,3,4,5,6,7,8,1,2,3,4
dst DCD 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
 END
2-46 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Writing ARM and Thumb Assembly Language
2.8 Using macros

A macro definition is a block of code enclosed between MACRO and MEND directives. It
defines a name that can be used instead of repeating the whole block of code. This has
two main uses:

• to make it easier to follow the logic of the source code, by replacing a block of
code with a single, meaningful name

• to avoid repeating a block of code several times.

Refer to MACRO and MEND on page 7-26 for more details.

2.8.1 Test-and-branch macro example

A test-and-branch operation requires two ARM instructions to implement.

You can define a macro definition such as this:

 MACRO
$label TestAndBranch $dest, $reg, $cc

$label CMP $reg, #0
 B$cc $dest
 MEND

The line after the MACRO directive is the macro prototype statement. The macro prototype
statement defines the name (TestAndBranch) you use to invoke the macro. It also defines
parameters ($label, $dest, $reg, and $cc). You must give values to the parameters when
you invoke the macro. The assembler substitutes the values you give into the code.

This macro can be invoked as follows:

test TestAndBranch NonZero, r0, NE
 ...
 ...
NonZero

After substitution this becomes:

test CMP r0, #0
 BNE NonZero
 ...
 ...
NonZero
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 2-47

Writing ARM and Thumb Assembly Language
2.8.2 Unsigned integer division macro example

Example 2-13 shows a macro that performs an unsigned integer division. It takes four
parameters:

$Bot The register that holds the divisor.

$Top The register that holds the dividend before the instructions are executed.
After the instructions are executed, it holds the remainder.

$Div The register where the quotient of the division is placed. It can be NULL

("") if only the remainder is required.

$Temp A temporary register used during the calculation.

Example 2-13

 MACRO
$Lab DivMod $Div,$Top,$Bot,$Temp
 ASSERT $Top <> $Bot ; Produce an error message if the
 ASSERT $Top <> $Temp ; registers supplied are
 ASSERT $Bot <> $Temp ; not all different
 IF "$Div" <> ""
 ASSERT $Div <> $Top ; These three only matter if $Div
 ASSERT $Div <> $Bot ; is not null ("")
 ASSERT $Div <> $Temp ;
 ENDIF
$Lab
 MOV $Temp, $Bot ; Put divisor in $Temp
 CMP $Temp, $Top, LSR #1 ; double it until
90 MOVLS $Temp, $Temp, LSL #1 ; 2 * $Temp > $Top
 CMP $Temp, $Top, LSR #1
 BLS %b90 ; The b means search backwards
 IF "$Div" <> "" ; Omit next instruction if $Div is null
 MOV $Div, #0 ; Initialize quotient
 ENDIF
91 CMP $Top, $Temp ; Can we subtract $Temp?
 SUBCS $Top, $Top,$Temp ; If we can, do so
 IF "$Div" <> "" ; Omit next instruction if $Div is null
 ADC $Div, $Div, $Div ; Double $Div
 ENDIF
 MOV $Temp, $Temp, LSR #1 ; Halve $Temp,
 CMP $Temp, $Bot ; and loop until
 BHS %b91 ; less than divisor
 MEND
2-48 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Writing ARM and Thumb Assembly Language
The macro checks that no two parameters use the same register. It also optimizes the
code produced if only the remainder is required.

To avoid multiple definitions of labels if DivMod is used more than once in the assembler
source, the macro uses local labels (90, 91). Refer to Local labels on page 2-13 for more
information.

Example 2-14 shows the code that this macro produces if it is invoked as follows:

ratio DivMod r0,r5,r4,r2

Example 2-14

 ASSERT r5 <> r4 ; Produce an error if the
 ASSERT r5 <> r2 ; registers supplied are
 ASSERT r4 <> r2 ; not all different
 ASSERT r0 <> r5 ; These three only matter if $Div
 ASSERT r0 <> r4 ; is not null ("")
 ASSERT r0 <> r2 ;
ratio
 MOV r2, r4 ; Put divisor in $Temp
 CMP r2, r5, LSR #1 ; double it until
90 MOVLS r2, r2, LSL #1 ; 2 * r2 > r5
 CMP r2, r5, LSR #1
 BLS %b90 ; The b means search backwards
 MOV r0, #0 ; Initialize quotient
91 CMP r5, r2 ; Can we subtract r2?
 SUBCS r5, r5, r2 ; If we can, do so
 ADC r0, r0, r0 ; Double r0

 MOV r2, r2, LSR #1 ; Halve r2,
 CMP r2, r4 ; and loop until
 BHS %b91 ; less than divisor
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 2-49

Writing ARM and Thumb Assembly Language
2.9 Describing data structures with MAP and FIELD directives

You can use the MAP and FIELD directives to describe data structures. These directives are
always used together.

Data structures defined using MAP and FIELD:

• are easily maintainable

• can be used to describe multiple instances of the same structure

• make it easy to access data efficiently.

The MAP directive specifies the base address of the data structure. Refer to MAP on
page 7-14 for further information.

The FIELD directive specifies the amount of memory required for a data item, and can
give the data item a label. It is repeated for each data item in the structure. Refer to
FIELD on page 7-15 for further information.

Note
No space in memory is allocated when a map is defined. Use define constant directives
(for example, DCD) to allocate space in memory.

2.9.1 Absolute maps

Example 2-15 shows a data structure described using MAP and FIELD. It is located at an
absolute (fixed) address, 4096 (0x1000) in this case.

Example 2-15

 MAP 4096
consta FIELD 4 ; consta uses four bytes, and is located at 4096
constb FIELD 4 ; constb uses four bytes, and is located at 5000
x FIELD 8 ; x uses eight bytes, and is located at 5004
y FIELD 8 ; y uses eight bytes, and is located at 5012
string FIELD 256 ; string can be up to 256 bytes long, starting at 5020

You can access data at these locations with LDR or STR instructions, such as:

 LDR r4,constb

You can only do this if each instruction is within 4KB (in either direction) of the data
item it accesses. Refer to ARM memory access instructions on page 4-6 for details of
the LDR and STR instructions.
2-50 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Writing ARM and Thumb Assembly Language
2.9.2 Relative maps

If you need to access data from more than 4KB away, you can use a register-relative
instruction, such as:

 LDR r4,[r9,offset]

offset is limited to 4096, so r9 must already contain a value within 4KB of the address
of the data.

You can access data in the structure described in Example 2-15 from an instruction at
any address. This program fragment shows how:

 MOV r9,#4096 ; or #0x1000
 LDR r4,[r9,constb - 4096]

The assembler calculates (constb - 4096) for you. However, it is better to redesign the
map description as in Example 2-16.

Example 2-16

 MAP 0
consta FIELD 4 ; consta uses four bytes, located at offset 0
constb FIELD 4 ; constb uses four bytes, located at offset 4
x FIELD 8 ; x uses eight bytes, located at offset 8
y FIELD 8 ; y uses eight bytes, located at offset 16
string FIELD 256 ; string is up to 256 bytes long, starting at offset 24

Using the map in Example 2-16, you can access the data structure at the same location
as before:

 MOV r9,#4096
 LDR r4,[r9,constb]

This program fragment assembles to exactly the same machine instructions as before.
The value of each label is 4096 less than before, so the assembler does not need to
subtract 4096 from each label to find the offset. The labels are relative to the start of the
data structure, instead of being absolute. The register used to hold the start address of
the map (r9 in this case) is called the base register.

There are likely to be many LDR or STR instructions accessing data in this data structure.
You avoid typing -4096 repeatedly by using this method. The code is also easier to
follow.

This map does not contain the location of the data structure. The location of the
structure is determined by the value loaded into the base register at runtime.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 2-51

Writing ARM and Thumb Assembly Language
The same map can be used to describe many instances of the data structure. These can
be located anywhere in memory.

There are restrictions on what addresses can be loaded into a register using the MOV

instruction. Refer to Loading addresses into registers on page 2-29 for details of how to
load arbitrary addresses.

Note

r9 is the static base register (sb) in the ARM-Thumb Procedure Call Standard. Refer to
the Using the Procedure Call Standard chapter in ADS Developer Guide for further
information.

2.9.3 Register-based maps

In many cases, you can use the same register as the base register every time you access
a data structure. You can include the name of the register in the base address of the map.
Example 2-17 shows such a register-based map. The labels defined in the map include
the register.

Example 2-17

 MAP 0,r9
consta FIELD 4 ; consta uses four bytes, located at offset 0 (from r9)
constb FIELD 4 ; constb uses four bytes, located at offset 4
x FIELD 8 ; x uses eight bytes, located at offset 8
y FIELD 8 ; y uses eight bytes, located at offset 16
string FIELD 256 ; string is up to 256 bytes long, starting at offset 24

Using the map in Example 2-17, you can access the data structure wherever it is:

 ADR r9,datastart
 LDR r4,constb ; => LDR r4,[r9,#4]

constb contains the offset of the data item from the start of the data structure, and also
includes the base register. In this case the base register is r9, defined in the MAP directive.
2-52 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Writing ARM and Thumb Assembly Language
2.9.4 Program-relative maps

You can use the program counter (r15) as the base register for a map. In this case, each
STM or LDM instruction must be within 4KB of the data item it addresses, because the
offset is limited to 4KB. The data structure must be in the same section as the
instructions, because otherwise there is no guarantee that the data items will be within
range after linking.

Example 2-18 shows a program fragment with such a map. It includes a directive which
allocates space in memory for the data structure, and an instruction which accesses it.

Example 2-18

datastruc SPACE 280 ; reserves 280 bytes of memory for datastruc
 MAP datastruc
consta FIELD 4
constb FIELD 4
x FIELD 8
y FIELD 8
string FIELD 256

code LDR r2,constb ; => LDR r2,[pc,offset]

In this case, there is no need to load the base register before loading the data as the
program counter already holds the correct address. (This is not actually the same as the
address of the LDR instruction, because of pipelining in the processor. However, the
assembler takes care of this for you.)
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 2-53

Writing ARM and Thumb Assembly Language
2.9.5 Finding the end of the allocated data

You can use the FIELD directive with an operand of 0 to label a location within a
structure. The location is labeled, but the location counter is not incremented.

The size of the data structure defined in Example 2-19 depends on the values of
MaxStrLen and ArrayLen. If these values are too large, the structure overruns the end of
available memory.

Example 2-19 uses:

• an EQU directive to define the end of available memory

• a FIELD directive with an operand of 0 to label the end of the data structure.

An ASSERT directive checks that the end of the data structure does not overrun the
available memory.

Example 2-19

StartOfData EQU 0x1000
EndOfData EQU 0x2000
 MAP StartOfData
Integer FIELD 4
Integer2 FIELD 4
String FIELD MaxStrLen
Array FIELD ArrayLen*8
BitMask FIELD 4
EndOfUsedData FIELD 0
 ASSERT EndOfUsedData <= EndOfData
2-54 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Writing ARM and Thumb Assembly Language
2.9.6 Forcing correct alignment

You are likely to have problems if you include some character variables in the data
structure, as in Example 2-20. This is because a lot of words are misaligned.

Example 2-20

StartOfData EQU 0x1000
EndOfData EQU 0x2000
 MAP StartOfData
Char FIELD 1
Char2 FIELD 1
Char3 FIELD 1
Integer FIELD 4 ; alignment = 3
Integer2 FIELD 4
String FIELD MaxStrLen
Array FIELD ArrayLen*8
BitMask FIELD 4
EndOfUsedData FIELD 0
 ASSERT EndOfUsedData <= EndOfData

You cannot use the ALIGN directive, because the ALIGN directive aligns the current
location within memory. MAP and FIELD directives do not allocate any memory for the
structures they define.

You could insert a dummy FIELD 1 after Char3 FIELD 1. However, this makes
maintenance difficult if you change the number of character variables. You must
recalculate the right amount of padding each time.

Example 2-21 on page 2-56 shows a better way of adjusting the padding. The example
uses a FIELD directive with a 0 operand to label the end of the character data. A second
FIELD directive inserts the correct amount of padding based on the value of the label. An
:AND: operator is used to calculate the correct value.

The (-EndOfChars):AND:3 expression calculates the correct amount of padding:

0 if EndOfChars is 0 mod 4;
3 if EndOfChars is 1 mod 4;
2 if EndOfChars is 2 mod 4;
1 if EndOfChars is 3 mod 4.

This automatically adjusts the amount of padding used whenever character variables are
added or removed.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 2-55

Writing ARM and Thumb Assembly Language
Example 2-21

StartOfData EQU 0x1000
EndOfData EQU 0x2000
 MAP StartOfData
Char FIELD 1
Char2 FIELD 1
Char3 FIELD 1
EndOfChars FIELD 0
Padding FIELD (-EndOfChars):AND:3
Integer FIELD 4
Integer2 FIELD 4
String FIELD MaxStrLen
Array FIELD ArrayLen*8
BitMask FIELD 4
EndOfUsedData FIELD 0
 ASSERT EndOfUsedData <= EndOfData
2-56 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Writing ARM and Thumb Assembly Language
2.9.7 Using register-based MAP and FIELD directives

Register-based MAP and FIELD directives define register-based symbols. There are two
main uses for register-based symbols:

• defining structures similar to C structures

• gaining faster access to memory sections described by non register-based MAP and
FIELD directives.

Defining register-based symbols

Register-based symbols can be very useful, but you must be careful when using them.
As a general rule, use them only in the following ways:

• As the location for a load or store instruction to load from or store to. If Location
is a register-based symbol based on the register Rb and with numeric offset, the
assembler automatically translates, for example, LDR Rn,Location into LDR

Rn,[Rb,#offset].

In an ADR or ADRL instruction, ADR Rn,Location is converted by the assembler into
ADD Rn,Rb,#offset .

• Adding an ordinary numeric expression to a register-based symbol to get another
register-based symbol.

• Subtracting an ordinary numeric expression from a register-based symbol to get
another register-based symbol.

• Subtracting a register-based symbol from another register-based symbol to get an
ordinary numeric expression. Do not do this unless the two register-based
symbols are based on the same register. Otherwise, you have a combination of
two registers and a numeric value. This results in an assembler error.

• As the operand of a :BASE: or :INDEX: operator. These operators are mainly of
use in macros.

Other uses usually result in assembler error messages. For example, if you write LDR

Rn,=Location, where Location is register-based, you are asking the assembler to load Rn

from a memory location that always has the current value of the register Rb plus offset
in it. It cannot do this, because there is no such memory location.

Similarly, if you write ADD Rd,Rn,#expression, and expression is register-based, you are
asking for a single ADD instruction that adds both the base register of the expression and
its offset to Rn. Again, the assembler cannot do this. You must use two ADD instructions
to perform these two additions.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 2-57

Writing ARM and Thumb Assembly Language
Setting up a C-type structure

There are two stages to using structures in C:

1. Declaring the fields that the structure contains.

2. Generating the structure in memory and using it.

For example, the following typedef statement defines a point structure that contains
three float fields named x, y and z, but it does not allocate any memory. The second
statement allocates three structures of type Point in memory, named origin, oldloc, and
newloc:

typedef struct Point
{
 float x,y,z;
} Point;

Point origin,oldloc,newloc;

The following assembly language code is equivalent to the typedef statement above:

PointBase RN r11
 MAP 0,PointBase
Point_x FIELD 4
Point_y FIELD 4
Point_z FIELD 4

The following assembly language code allocates space in memory. This is equivalent to
the last line of C code:

origin SPACE 12
oldloc SPACE 12
newloc SPACE 12

You must load the base address of the data structure into the base register before you
can use the labels defined in the map. For example:

 LDR PointBase,=origin
 MOV r0,#0
 STR r0,Point_x
 MOV r0,#2
 STR r0,Point_y
 MOV r0,#3
 STR r0,Point_z

is equivalent to the C code:

origin.x = 0;
origin.y = 2;
origin.z = 3;
2-58 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Writing ARM and Thumb Assembly Language
Making faster access possible

To gain faster access to a section of memory:

1. Describe the memory section as a structure.

2. Use a register to address the structure.

For example, consider the definitions in Example 2-22.

Example 2-22

StartOfData EQU 0x1000
EndOfData EQU 0x2000
 MAP StartOfData
Integer FIELD 4
String FIELD MaxStrLen
Array FIELD ArrayLen*8
BitMask FIELD 4
EndOfUsedData FIELD 0
 ASSERT EndOfUsedData <= EndOfData

If you want the equivalent of the C code:

Integer = 1;
String = "";
BitMask = 0xA000000A;

With the definitions from Example 2-22, the assembly language code can be as shown
in Example 2-23.

Example 2-23

 MOV r0,#1
 LDR r1,=Integer
 STR r0,[r1]
 MOV r0,#0
 LDR r1,=String
 STRB r0,[r1]
 MOV r0,#0xA000000A
 LDR r1,=BitMask
 STRB r0,[r1]

Example 2-23 uses LDR pseudo-instructions. Refer to Loading with LDR Rd, =const on
page 2-26 for an explanation of these.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 2-59

Writing ARM and Thumb Assembly Language
Example 2-23 contains separate LDR pseudo-instructions to load the address of each of
the data items. Each LDR pseudo-instruction is converted to a separate instruction by the
assembler. However, it is possible to access the entire data section with a single LDR

pseudo-instruction. Example 2-24 shows how to do this. Both speed and code size are
improved.

Example 2-24

 AREA data, DATA
StartOfData EQU 0x1000
EndOfData EQU 0x2000
DataAreaBase RN r11
 MAP 0,DataAreaBase
StartOfUsedData FIELD 0
Integer FIELD 4
String FIELD MaxStrLen
Array FIELD ArrayLen*8
BitMask FIELD 4
EndOfUsedData FIELD 0
UsedDataLen EQU EndOfUsedData - StartOfUsedData
 ASSERT UsedDataLen <= (EndOfData - StartOfData)

 AREA code, CODE
 LDR DataAreaBase,=StartOfData
 MOV r0,#1
 STR r0,Integer
 MOV r0,#0
 STRB r0,String
 MOV r0,#0xA000000A
 STRB r0,BitMask

Note

In this example, the MAP directive is:

MAP 0, DataAreaBase

not:

MAP StartOfData,DataAreaBase

The MAP and FIELD directives give the position of the data relative to the DataAreaBase

register, not the absolute position. The LDR DataAreaBase,=StartOfData statement
provides the absolute position of the entire data section.
2-60 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Writing ARM and Thumb Assembly Language
If you use the same technique for a section of memory containing memory-mapped I/O
(or whose absolute addresses must not change for other reasons), you must take care to
keep the code maintainable.

One method is to add comments to the code warning maintainers to take care when
modifying the definitions. A better method is to use definitions of the absolute addresses
to control the register-based definitions.

Using MAP offset,reg followed by label FIELD 0 makes label into a register-based
symbol with register part reg and numeric part offset. Example 2-25 shows this.

Example 2-25

StartOfIOArea EQU 0x1000000
SendFlag_Abs EQU 0x1000000
SendData_Abs EQU 0x1000004
RcvFlag_Abs EQU 0x1000008
RcvData_Abs EQU 0x100000C
IOAreaBase RN r11
 MAP (SendFlag_Abs-StartOfIOArea),IOAreaBase
SendFlag FIELD 0
 MAP (SendData_Abs-StartOfIOArea),IOAreaBase
SendData FIELD 0
 MAP (RcvFlag_Abs-StartOfIOArea),IOAreaBase
RcvFlag FIELD 0
 MAP (RcvData_Abs-StartOfIOArea),IOAreaBase
RcvData FIELD 0

Load the base address with LDR IOAreaBase,=StartOfIOArea. This allows the individual
locations to be accessed with statements like LDR R0,RcvFlag and STR R4,SendData.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 2-61

Writing ARM and Thumb Assembly Language
2.9.8 Using two register-based structures

Sometimes you need to operate on two structures of the same type at the same time. For
example, if you want the equivalent of the pseudo-code:

newloc.x = oldloc.x + (value in r0);
newloc.y = oldloc.y + (value in r1);
newloc.z = oldloc.z + (value in r2);

The base register needs to point alternately to the oldloc structure and to the newloc one.
Repeatedly changing the base register would be inefficient. Instead, use a
non register-based map, and set up two pointers in two different registers as in
Example 2-26.

Example 2-26

 MAP 0 ; Non-register based relative map used twice, for
Pointx FIELD 4 ; old and new data at oldloc and newloc
Pointy FIELD 4 ; oldloc and newloc are labels for
Pointz FIELD 4 ; memory allocated in other sections

 ; code

 ADR r8,oldloc
 ADR r9,newloc
 LDR r3,[r8,Pointx] ; load from oldloc (r8)
 ADD r3,r3,r0
 STR r3,[r9,Pointx] ; store to newloc (r9)
 LDR r3,[r8,Pointy]
 ADD r3,r3,r1
 STR r3,[r9,Pointy]
 LDR r3,[r8,Pointz]
 ADD r3,r3,r2
 STR r3,[r9,Pointz]
2-62 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Writing ARM and Thumb Assembly Language
2.9.9 Avoiding problems with MAP and FIELD directives

Using MAP and FIELD directives can help you to produce maintainable data structures.
However, this is only true if the order the elements are placed in memory is not
important to either the programmer or the program.

You can have problems if you load or store multiple elements of a structure in a single
instruction. These problems arise in operations such as:

• loading several single-byte elements into one register

• using a store multiple or load multiple instruction (STM and LDM) to store or load
multiple words from or to multiple registers.

These operations require the data elements in the structure to be contiguous in memory,
and to be in a specific order. If the order of the elements is changed, or a new element
is added, the program is broken in a way that cannot be detected by the assembler.

There are several methods for avoiding problems such as this.

Example 2-27 shows a sample structure.

Example 2-27

MiscBase RN r10
 MAP 0,MiscBase
MiscStart FIELD 0
Misc_a FIELD 1
Misc_b FIELD 1
Misc_c FIELD 1
Misc_d FIELD 1
MiscEndOfChars FIELD 0
MiscPadding FIELD (-:INDEX:MiscEndOfChars) :AND: 3
Misc_I FIELD 4
Misc_J FIELD 4
Misc_K FIELD 4
Misc_data FIELD 4*20
MiscEnd FIELD 0
MiscLen EQU MiscEnd-MiscStart

There is no problem in using LDM and STM instructions for accessing single data elements
that are larger than a word (for example, arrays). An example of this is the 20-word
element Misc_data. It could be accessed as follows:

ArrayBase RN R9
 ADR ArrayBase, MiscBase
 LDMIA ArrayBase, {R0-R5}
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 2-63

Writing ARM and Thumb Assembly Language
Example 2-27 on page 2-63 loads the first six items in the array Misc_data. The array is
a single element and therefore covers contiguous memory locations. No one is likely to
want to split it into separate arrays in the future.

However, for loading Misc_I, Misc_J, and Misc_K into registers r0, r1, and r2 the
following code works, but might cause problems in the future:

ArrayBase RN r9

 ADR ArrayBase, Misc_I
 LDMIA ArrayBase, {r0-r2}

Problems arise if the order of Misc_I, Misc_J, and Misc_K is changed, or if a new element
Misc_New is added in the middle. Either of these small changes breaks the code.

If these elements are accessed separately elsewhere, you must not amalgamate them
into a single array element. In this case, you must amend the code. The first remedy is
to comment the structure to prevent changes affecting this section:

Misc_I FIELD 4 ; ==} Do not split/reorder
Misc_J FIELD 4 ; } these 3 elements, STM
Misc_K FIELD 4 ; ==} and LDM instructions used.

If the code is strongly commented, no deliberate changes are likely to be made that
affect the workings of the program. Unfortunately, mistakes can occur. A second
method of catching these problems is to add ASSERT directives just before the STM and LDM

instructions to check that the labels are consecutive and in the correct order:

ArrayBase RN R9

 ; Check that the structure elements
 ; are correctly ordered for LDM
 ASSERT (((Misc_J-Misc_I) = 4) :LAND: ((Misc_K-Misc_J) = 4))
 ADR ArrayBase, Misc_I
 LDMIA ArrayBase, {r0-r2}

This ASSERT directive stops assembly at this point if the structure is not in the correct
order to be loaded with an LDM. Remember that the element with the lowest address is
always loaded from, or stored to, the lowest numbered register.
2-64 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Writing ARM and Thumb Assembly Language
2.10 Using frame directives

If you want to be able to debug your application using stack unwinding, you must use
frame directives to describe the way that your code uses the stack. Refer to Frame
description directives on page 7-31 for details of these directives.

The assembler uses these directives to insert DWARF2 debug frame information into
the object file in ELF format that it produces. This information is required by the
debuggers for stack unwinding. Refer to the Using the Procedure Call Standard chapter
in ADS Developer Guide for further information about stack unwinding.

Frame directives do not affect the code produced by armasm.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 2-65

Writing ARM and Thumb Assembly Language
2-66 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Chapter 3-
Assembler Reference

This chapter provides general reference material on the ARM assemblers. It contains
the following sections:

• Command syntax on page 3-2

• Format of source lines on page 3-8

• Predefined register and coprocessor names on page 3-9

• Built-in variables on page 3-10

• Symbols on page 3-12

• Expressions, literals, and operators on page 3-18.

This chapter does not explain how to write ARM assembly language. See Chapter 2
Writing ARM and Thumb Assembly Language for tutorial information.

It also does not describe the instructions, directives, or pseudo-instructions. See the
separate chapters for reference information on these.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 3-1

Assembler Reference
3.1 Command syntax

This section relates only to armasm. The inline assemblers are part of the C and C++
compilers, and have no command syntax of their own.

The armasm command line is case-insensitive, except in filenames, and where specified.

Invoke the ARM assembler using this command:

armasm [-16|-32] [-apcs [none|[/qualifier[/qualifier[...]]]]]

[-bigend|-littleend] [-checkreglist] [-cpu cpu] [-depend dependfile|-m|-md]

[-errors errorfile] [-fpu name] [-g] [-help] [-i dir [,dir]…] [-keep] [-list

[listingfile] [options]] [-maxcache n] [-memaccess attributes] [-nocache]

[-noesc] [-noregs] [-nowarn] [-o filename] [-predefine "directive"] [-split_ldm]

[-unsafe] [-via file] inputfile

where:

-16 instructs the assembler to interpret instructions as Thumb instructions.
This is equivalent to a CODE16 directive at the head of the source file.

-32 instructs the assembler to interpret instructions as ARM instructions.
This is the default.

-apcs [none|[/qualifier[/qualifier[...]]]]

specifies whether you are using the ARM/Thumb Procedure Call
Standard (ATPCS). It can also specify some attributes of code sections.
See ADS Developer Guide for more information about the ATPCS.

/none specifies that inputfile does not use ATPCS. ATPCS registers
are not set up. Qualifiers are not allowed.

NoteNote
ATPCS qualifiers do not affect the code produced by the assembler. They
are an assertion by the programmer that the code in inputfile complies
with a particular variant of ATPCS. They cause attributes to be set in the
object file produced by the assembler. The linker uses these attributes to
check compatibility of files, and to select appropriate library variants.

Values for qualifier are:

/interwork specifies that the code in inputfile is suitable for
ARM/Thumb interworking. See ADS Developer
Guide for information on interworking.

/nointerwork specifies that the code in inputfile is not suitable
for ARM/Thumb interworking. This is the default.
3-2 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Assembler Reference
/ropi specifies that the content of inputfile is read-only
position-independent. The default is /noropi.

/pic is a synonym for /ropi.

/nopic is a synonym for /noropi.

/rwpi specifies that the content of inputfile is read-write
position-independent. The default is /norwpi.

/pid is a synonym for /rwpi.

/nopid is a synonym for /norwpi.

/swstackcheck specifies that the code in inputfile carries out
software stack-limit checking.

/noswstackcheck specifies that the code in inputfile does not carry
out software stack-limit checking. This is the
default.

/swstna specifies that the code in inputfile is compatible
both with code which carries out stack-limit
checking, and with code that does not carry out
stack-limit checking.

-bigend instructs the assembler to assemble code suitable for a big-endian ARM.
The default is -littleend.

-littleend

instructs the assembler to assemble code suitable for a little-endian ARM.

-checkreglist

instructs the assembler to check RLIST, LDM, and STM register lists to ensure
that all registers are provided in increasing register number order. A
warning is given if registers are not listed in order.

-cpu cpu sets the target CPU. Some instructions produce either errors or warnings
if assembled for the wrong target CPU (see also the -unsafe assembler
option). Valid values for cpu are architecture names such as 3, 4T, or 5TE,
or part numbers such as ARM7TDMI®. See ARM Architecture Reference
Manual for information about the architectures. The default is
ARM7TDMI.

-depend dependfile

instructs the assembler to save source file dependency lists to dependfile.
These are suitable for use with make utilities.

-m instructs the assembler to write source file dependency lists to stdout.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 3-3

Assembler Reference
-md instructs the assembler to write source file dependency lists to
inputfile.d.

-errors errorfile

instructs the assembler to output error messages to errorfile.

-fpu name this option selects the target floating-point unit (FPU) architecture. If you
specify this option it overrides any implicit FPU set by the -cpu option.
Floating-point instructions produce either errors or warnings if
assembled for the wrong target FPU.

The assembler sets a build attribute corresponding to name in the object
file. The linker determines compatibility between object files, and
selection of libraries, accordingly.

Valid options are:

none Selects no floating-point option. This makes your assembled
object file compatible with any other object file.

vfp This is a synonym for -fpu vfpv1.

vfpv1 Selects hardware vector floating-point unit conforming to
architecture VFPv1.

vfpv2 Selects hardware vector floating-point unit conforming to
architecture VFPv2.

fpa Selects hardware Floating Point Accelerator.

softvfp+vfp

Selects hardware Vector Floating Point unit.

To armasm, this is identical to -fpu vfpv1. See the C and C++
Compilers chapter in ADS Compiler, Linker, and Utilities
Guide for details of the effect on software library selection at
link time.

softvfp Selects software floating-point library (FPLib) with
pure-endian doubles. This is the default if no -fpu option is
specified.

softfpa Selects software floating-point library with mixed-endian
doubles.

-g instructs the assembler to generate DWARF2 debug tables. For
backwards compatibility, the following command line option is
permitted, but not required:

-dwarf2
3-4 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Assembler Reference
-help instructs the assembler to display a summary of the assembler
command-line options.

-i dir [,dir]…

adds directories to the source file search path so that arguments to GET/
INCLUDE directives do not need to be fully qualified (see GET or
INCLUDE on page 7-58).

-keep instructs the assembler to keep local labels in the symbol table of the
object file, for use by the debugger (see KEEP on page 7-61).

-list [listingfile] [options]

instructs the assembler to output a detailed listing of the assembly
language produced by the assembler to listingfile. If - is given as
listingfile, listing is sent to stdout. If no listingfile is given, listing is
sent to inputfile.lst.

Use the following command-line options to control the behavior of -list:

-noterse

turns the terse flag off. When this option is on, lines skipped
due to conditional assembly do not appear in the listing. If the
terse option is off, these lines do appear in the listing. The
default is on.

-width sets the listing page width. The default is 79 characters.

-length sets the listing page length. Length zero means an unpaged
listing. The default is 66 lines.

-xref instructs the assembler to list cross-referencing information on
symbols, including where they were defined and where they
were used, both inside and outside macros. The default is off.

-maxcache n

sets the maximum source cache size to n. The default is 8MB.

-memaccess attributes

Specifies memory access attributes of the target memory system. The
default is to allow aligned loads and saves of bytes, halfwords and words.
attributes modify the default. They can be any one of the following:

+L41 Allow unaligned LDRs.

-L22 Disallow halfword loads.

-S22 Disallow halfword stores.

-L22-S22 Disallow halfword loads and stores.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 3-5

Assembler Reference
-nocache turns off source caching. By default the assembler caches source files on
the first pass and reads them from memory on the second pass.

-noesc instructs the assembler to ignore C-style escaped special characters, such
as \n and \t.

-noregs instructs the assembler not to predefine register names. See Predefined
register and coprocessor names on page 3-9 for a list of predefined
register names.

-nowarn turns off warning messages.

-o filename

names the output object file. If this option is not specified, the assembler
uses the second command-line argument that is not a valid command-line
option as the name of the output file. If there is no such argument, the
assembler creates an object filename of the form inputfilename.o.

-predefine "directive"

instructs the assembler to pre-execute one of the SET directives. You must
enclose directive in quotes. See SETA, SETL, and SETS on page 7-6.

The assembler executes a corresponding GBLL, GBLS, or GBLA directive to
define the variable before setting its value.

The variable name is case-sensitive.

-split_ldm This option instructs the assembler to fault LDM and STM instructions if the
maximum number of registers transferred exceeds:

• five, for all STMs, and for LDMs that do not load the PC

• four, for LDMs that load the PC.

Avoiding large multiple register transfers can reduce interrupt latency on
ARM systems that:

• do not have a cache or a write buffer (for example, a cacheless
ARM7TDMI)

• use zero wait-state, 32-bit memory.

NoteNote

Avoiding large multiple register transfers increases code size and
decreases performance slightly.

Avoiding large multiple register transfers has no significant benefit for
cached systems or processors with a write buffer.
3-6 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Assembler Reference
Avoiding large multiple register transfers also has no benefit for systems
without zero wait-state memory, or for systems with slow peripheral
devices. Interrupt latency in such systems is determined by the number of
cycles required for the slowest memory or peripheral access. This is
typically much greater than the latency introduced by multiple register
transfers.

-unsafe allows assembly of a file containing instructions that are not available on
the specified architecture and processor. Corresponding error messages
are changed to warning messages.

-via file instructs the assembler to open file and read in command-line arguments
to the assembler. For further information see the Via File Syntax appendix
in ADS Compiler, Linker, and Utilities Guide.

inputfile specifies the input file for the assembler. Input files must be ARM or
Thumb assembly language source files.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 3-7

Assembler Reference
3.2 Format of source lines

The general form of source lines in an ARM assembly language module is:

{symbol} {instruction|directive|pseudo-instruction} {;comment}

All three sections of the source line are optional.

Instructions cannot start in the first column. They must be preceded by white space even
if there is no preceding symbol.

You can write directives in all upper case, as in this manual. Alternatively, you can write
directives in all lower case. You must not write a directive in mixed upper and lower
case.

You can use blank lines to make your code more readable.

symbol is usually a label (see Labels on page 3-15). In instructions and
pseudo-instructions it is always a label. In some directives it is a symbol for a variable
or a constant. The description of the directive makes this clear in each case.

symbol must begin in the first column and cannot contain any whitespace character such
as a space or a tab (see Symbol naming rules on page 3-12).
3-8 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Assembler Reference
3.3 Predefined register and coprocessor names

All register and coprocessor names are case-sensitive.

3.3.1 Predeclared register names

The following register names are predeclared:

• r0-r15 and R0-R15

• a1-a4 (argument, result, or scratch registers, synonyms for r0 to r3)

• v1-v8 (variable registers, r4 to r11)

• sb and SB (static base, r9)

• sl and SL (stack limit, r10)

• fp and FP (frame pointer, r11)

• ip and IP (intra-procedure-call scratch register, r12)

• sp and SP (stack pointer, r13)

• lr and LR (link register, r14)

• pc and PC (program counter, r15).

3.3.2 Predeclared program status register names

The following program status register names are predeclared:

• cpsr and CPSR (current program status register)

• spsr and SPSR (saved program status register).

3.3.3 Predeclared floating-point register names

The following floating-point register names are predeclared:

• f0-f7 and F0-F7 (FPA registers)

• s0-s31 and S0-S31 (VFP single-precision registers)

• d0-d15 and D0-D15 (VFP double-precision registers).

3.3.4 Predeclared coprocessor names

The following coprocessor names and coprocessor register names are predeclared:

• p0-p15 (coprocessors 0-15)

• c0-c15 (coprocessor registers 0-15).
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 3-9

Assembler Reference
3.4 Built-in variables

Table 3-1 lists the built-in variables defined by the ARM assembler.

Built-in variables cannot be set using the SETA, SETL, or SETS directives. They can be used
in expressions or conditions, for example:

 IF {ARCHITECTURE} = "4T"

Table 3-1 Built-in variables

{PC} or . Address of current instruction.

{VAR} or @ Current value of the storage area location counter.

{TRUE} Logical constant true.

{FALSE} Logical constant false.

{OPT} Value of the currently-set listing option. The OPT directive can be used to save the current listing
option, force a change in it, or restore its original value.

{CONFIG} Has the value 32 if the assembler is assembling ARM code, or 16 if it is assembling Thumb code.

{ENDIAN} Has the value big if the assembler is in big-endian mode, or little if it is in little-endian mode.

{CODESIZE} Is a synonym for {CONFIG}.

{CPU} Holds the name of the selected cpu. The default is ARM7TDMI. If an architecture was specified in
the command line -cpu option, {CPU} holds the value "Generic ARM".

{FPU} Holds the name of the selected fpu. The default is SoftVFP.

{ARCHITECTURE} Holds the name of the selected ARM architecture.

{PCSTOREOFFSET} Is the offset between the address of the STR pc,[...] or STM Rb,{..., pc} instruction and the
value of pc stored out. This varies depending on the CPU or architecture specified.

{ARMASM_VERSION} Holds an integer that increases with each version. See also Determining the armasm version at
assembly time on page 3-11

|ads$version| Has the same value as {ARMASM_VERSION}.

{INTER} Has the value True if /inter is set. The default is False.

{ROPI} Has the value True if /ropi is set. The default is False.

{RWPI} Has the value True if /rwpi is set. The default is False.

{SWST} Has the value True if /swst is set. The default is False.

{NOSWST} Has the value True if /noswst is set. The default is False.
3-10 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Assembler Reference
|ads$version| must be all lower case. The other built-in variables can be upper-case,
lower-case, or mixed.

3.4.1 Determining the armasm version at assembly time

The built-in variable {ARMASM$VERSION} can be used to distinguish between versions of
armasm from ADS1.0 onwards. However, previous versions of armasm did not have this
built-in variable.

If you need to build both ADS and SDT versions of your code, you can test for the
built-in variable |ads$version|. Use code similar to the following:

 IF :DEF: |ads$version|
 ; code for ADS
 ELSE
 ; code for SDT
 ENDIF
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 3-11

Assembler Reference
3.5 Symbols

You can use symbols to represent variables, addresses, and numeric constants. Symbols
representing addresses are also called labels. See:

• Variables on page 3-13

• Numeric constants on page 3-13

• Labels on page 3-15

• Local labels on page 3-16.

3.5.1 Symbol naming rules

The following general rules apply to symbol names:

• You can use uppercase letters, lowercase letters, numeric characters, or the
underscore character in symbol names.

• Do not use numeric characters for the first character of symbol names, except in
local labels (see Local labels on page 3-16).

• Symbol names are case-sensitive.

• All characters in the symbol name are significant.

• Symbol names must be unique within their scope.

• Symbols must not use built-in variable names or predefined symbol names (see
Predefined register and coprocessor names on page 3-9 and Built-in variables on
page 3-10).

• Symbols must not use the same name as instruction mnemonics or directives. If
you use the same name as an instruction mnemonic or directive, use double bars
to delimit the symbol name. For example:

||ASSERT||

The bars are not part of the symbol.

If you need to use a wider range of characters in symbols, for example, when working
with compilers, use single bars to delimit the symbol name. For example:

|.text|

The bars are not part of the symbol. You cannot use bars, semicolons, or newlines within
the bars.
3-12 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Assembler Reference
3.5.2 Variables

The value of a variable can be changed as assembly proceeds. Variables are of three
types:

• numeric

• logical

• string.

The type of a variable cannot be changed.

The range of possible values of a numeric variable is the same as the range of possible
values of a numeric constant or numeric expression (see Numeric constants on
page 3-13 and Numeric expressions on page 3-20).

The possible values of a logical variable are {TRUE} or {FALSE} (see Logical expressions
on page 3-23).

The range of possible values of a string variable is the same as the range of values of a
string expression (see String expressions on page 3-19).

Use the GBLA, GBLL, GBLS, LCLA, LCLL, and LCLS directives to declare symbols representing
variables, and assign values to them using the SETA, SETL, and SETS directives. See:

• GBLA, GBLL, and GBLS on page 7-4

• LCLA, LCLL, and LCLS on page 7-5

• SETA, SETL, and SETS on page 7-6.

3.5.3 Numeric constants

Numeric constants are 32-bit integers. You can set them using unsigned numbers in the
range 0 to 2 32 – 1, or signed numbers in the range –231 to 231 – 1. However, the
assembler makes no distinction between –n and 232 – n. Relational operators such as >=
use the unsigned interpretation. This means that 0 > –1 is {FALSE}.

Use the EQU directive to define constants (see EQU on page 7-55). You cannot change
the value of a numeric constant after you define it.

See also Numeric expressions on page 3-20 and Numeric literals on page 3-21.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 3-13

Assembler Reference
3.5.4 Assembly time substitution of variables

You can use a string variable for a whole line of assembly language, or any part of a line.
Use the variable with a $ prefix in the places where the value is to be substituted for the
variable. The dollar character instructs the assembler to substitute the string into the
source code line before checking the syntax of the line.

Numeric and logical variables can also be substituted. The current value of the variable
is converted to a hexadecimal string (or T or F for logical variables) before substitution.

Use a dot to mark the end of the variable name if the following character would be
permissible in a symbol name (see Symbol naming rules on page 3-12). You must set
the contents of the variable before you can use it.

If you need a $ that you do not want to be substituted, use $$. This is converted to a single
$.

You can include a variable with a $ prefix in a string. Substitution occurs in the same
way as anywhere else.

Substitution does not occur within vertical bars, except that vertical bars within double
quotes do not affect substitution.

Examples

 ; straightforward substitution
 GBLS add4ff
 ;
add4ff SETS "ADD r4,r4,#0xFF" ; set up add4ff
 $add4ff.00 ; invoke add4ff
 ; this produces
 ADD r4,r4,#0xFF00

 ; elaborate substitution
 GBLS s1
 GBLS s2
 GBLS fixup
 GBLA count
 ;
count SETA 14
s1 SETS "a$$b$count" ; s1 now has value a$b0000000E
s2 SETS "abc"
fixup SETS "|xy$s2.z|" ; fixup now has value |xyabcz|
|C$$code| MOV r4,#16 ; but the label here is C$$code
3-14 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Assembler Reference
3.5.5 Labels

Labels are symbols representing the addresses in memory of instructions or data. They
can be program-relative, register-relative, or absolute.

Program-relative labels

These represent the program counter, plus or minus a numeric constant. Use them as
targets for branch instructions, or to access small items of data embedded in code
sections. You can define program-relative labels using a label on an instruction or on
one of the Define Constant directives. See:

• DCB on page 7-17

• DCD and DCDU on page 7-18

• DCFD and DCFDU on page 7-20

• DCFS and DCFSU on page 7-21

• DCW and DCWU on page 7-24.

Register-relative labels

These represent a named register plus a numeric constant. They are most often used to
access data in data sections. You can define them with a storage map. You can use the
EQU directive to define additional register-relative labels, based on labels defined in
storage maps. See:

• MAP on page 7-14

• SPACE on page 7-16

• DCDO on page 7-19

• EQU on page 7-55.

Absolute addresses

These are numeric constants. They are integers in the range 0 to 232–1. They address the
memory directly.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 3-15

Assembler Reference
3.5.6 Local labels

A local label is a number in the range 0-99, optionally followed by a name. The same
number can be used for more than one local label in an ELF section.

Local labels are typically used for loops and conditional code within a routine, or for
small subroutines that are only used locally. They are particularly useful in macros (see
MACRO and MEND on page 7-26).

Use the ROUT directive to limit the scope of local labels (see ROUT on page 7-65). A
reference to a local label refers to a matching label within the same scope. If there is no
matching label within the scope in either direction, the assembler generates an error
message and the assembly fails.

You can use the same number for more than one local label even within the same scope.
By default, the assembler links a local label reference to:

• the most recent local label of the same number, if there is one within the scope

• the next following local label of the same number, if there is not a preceding one
within the scope.

Use the optional parameters to modify this search pattern if required.

Syntax

The syntax of a local label is:

n{routname}

The syntax of a reference to a local label is:

%{F|B}{A|T}n{routname}

where:

n is the number of the local label.

routname is the name of the current scope.

% introduces the reference.

F instructs the assembler to search forwards only.

B instructs the assembler to search backwards only.

A instructs the assembler to search all macro levels.

T instructs the assembler to look at this macro level only.

If neither F or B is specified, the assembler searches backwards first, then forwards.

If neither A or T is specified, the assembler searches all macros from the current level to
the top level, but does not search lower level macros.
3-16 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Assembler Reference
If routname is specified in either a label or a reference to a label, the assembler checks it
against the name of the nearest preceding ROUT directive. If it does not match, the
assembler generates an error message and the assembly fails.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 3-17

Assembler Reference
3.6 Expressions, literals, and operators

Expressions are combinations of symbols, values, unary and binary operators, and
parentheses. There is a strict order of precedence in their evaluation:

1. Expressions in parentheses are evaluated first.

2. Operators are applied in precedence order.

3. Adjacent unary operators are evaluated from right to left.

4. Binary operators of equal precedence are evaluated from left to right.

The assembler includes an extensive set of operators for use in expressions. Many of the
operators resemble their counterparts in high-level languages such as C (see Unary
operators on page 3-24 and Binary operators on page 3-26).

This section contains the following subsections:

• String expressions on page 3-19

• String literals on page 3-19

• Numeric expressions on page 3-20

• Numeric literals on page 3-21

• Floating-point literals on page 3-22

• Register-relative and program-relative expressions on page 3-23

• Logical expressions on page 3-23

• Logical literals on page 3-23

• Unary operators on page 3-24

• Binary operators on page 3-26.
3-18 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Assembler Reference
3.6.1 String expressions

String expressions consist of combinations of string literals, string variables, string
manipulation operators, and parentheses. See:

• String literals

• Variables on page 3-13

• Unary operators on page 3-24

• String manipulation operators on page 3-27

• SETA, SETL, and SETS on page 7-6.

Characters that cannot be placed in string literals can be placed in string expressions
using the :CHR: unary operator. Any ASCII character from 0 to 255 is allowed.

The value of a string expression cannot exceed 512 characters in length. It can be of zero
length.

Example

improb SETS "literal":CC:(strvar2:LEFT:4)
 ; sets the variable improb to the value "literal"
 ; with the left-most four characters of the
 ; contents of string variable strvar2 appended

3.6.2 String literals

String literals consist of a series of characters contained between double quote
characters. The length of a string literal is restricted by the length of the input line (see
Format of source lines on page 3-8).

To include a double quote character or a dollar character in a string, use two of the
character.

C string escape sequences are also allowed, unless -noesc is specified (see Command
syntax on page 3-2).

Examples

abc SETS "this string contains only one "" double quote"
def SETS "this string contains only one $$ dollar symbol"
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 3-19

Assembler Reference
3.6.3 Numeric expressions

Numeric expressions consist of combinations of numeric constants, numeric variables,
ordinary numeric literals, binary operators, and parentheses. See:

• Numeric constants on page 3-13

• Variables on page 3-13

• Numeric literals on page 3-21

• Binary operators on page 3-26

• SETA, SETL, and SETS on page 7-6.

Numeric expressions can contain register-relative or program-relative expressions if the
overall expression evaluates to a value that does not include a register or the program
counter.

Numeric expressions evaluate to 32-bit integers. You can interpret them as unsigned
numbers in the range 0 to 232 – 1, or signed numbers in the range –231 to 231 – 1.
However, the assembler makes no distinction between –n and 232 – n. Relational
operators such as >= use the unsigned interpretation. This means that 0 > –1 is {FALSE}.

Example

a SETA 256*256 ; 256*256 is a numeric expression
 MOV r1,#(a*22) ; (a*22) is a numeric expression
3-20 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Assembler Reference
3.6.4 Numeric literals

Numeric literals can take any of the following forms:

• decimal-digits

• 0xhexadecimal-digits

• &hexadecimal-digits

• n_base-n-digits

where

decimal-digits

is a sequence of characters using only the digits 0 to 9.

hexadecimal-digits

is a sequence of characters using only the digits 0 to 9 and the letters
A to F or a to f.

n_ is a single digit between 2 and 9 inclusive, followed by an underscore
character.

base-n-digits

is a sequence of characters using only the digits 0 to (n – 1).

You must not use any other characters. The sequence of characters must evaluate to an
integer in the range 0 to 232 – 1 (except in DCQ and DCQU directives, where the range is 0
to 264 – 1).

Examples

a SETA 34906
addr DCD 0xA10E
 LDR r4,&1000000F
 DCD 2_11001010
c3 SETA 8_74007
 DCQ 0x0123456789abcdef
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 3-21

Assembler Reference
3.6.5 Floating-point literals

Floating-point literals can take any of the following forms:

• {-}digitsE{-}digits

• {-}{digits}.digits{E{-}digits}

• 0xhexdigits

• &hexdigits

digits are sequences of characters using only the digits 0 to 9. You can write E

in uppercase or lowercase. These forms correspond to normal
floating-point notation.

hexdigits are sequences of characters using only the digits 0 to 9 and the letters
A to F or a to f. These forms correspond to the internal representation of
the numbers in the computer. Use these forms to enter infinities and
NaNs, or if you want to be sure of the exact bit patterns you are using.

The range for single-precision floating point values is:

• maximum 3.40282347e+38

• minimum 1.17549435e–38.

The range for double-precision floating point values is:

• maximum 1.79769313486231571e+308

• minimum 2.22507385850720138e–308.

Examples

 DCFD 1E308,-4E-100
 DCFS 1.0
 DCFD 3.725e15
 LDFS 0x7FC00000 ; Quiet NaN
 LDFD &FFF0000000000000 ; Minus infinity
3-22 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Assembler Reference
3.6.6 Register-relative and program-relative expressions

A register-relative expression evaluates to a named register plus or minus a numeric
constant (see MAP on page 7-14).

A program-relative expression evaluates to the program counter (pc), plus or minus a
numeric constant. It is normally a label combined with a numeric expression.

Example

 LDR r4,=data+4*n ; n is an assembly-time variable
 ; code
 MOV pc,lr
data DCD value0
 ; n-1 DCD directives
 DCD valuen ; data+4*n points here
 ; more DCD directives

3.6.7 Logical expressions

Logical expressions consist of combinations of logical literals ({TRUE} or {FALSE}),
logical variables, Boolean operators, relations, and parentheses (see Boolean operators
on page 3-30).

Relations consist of combinations of variables, literals, constants, or expressions with
appropriate relational operators (see Relational operators on page 3-29).

3.6.8 Logical literals

There are only two logical literals:

• {TRUE}

• {FALSE}.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 3-23

Assembler Reference
3.6.9 Unary operators

Unary operators have the highest precedence and are evaluated first. A unary operator
precedes its operand. Adjacent operators are evaluated from right to left.

Table 3-2 lists the unary operators.

Table 3-2 Unary operators

Operator Usage Description

? ?A Number of bytes of executable code generated by line defining symbol A.

BASE :BASE:A If A is a pc-relative or register-relative expression, BASE returns the number
of its register component

BASE is most useful in macros.

INDEX :INDEX:A If A is a register-relative expression, INDEX returns the offset from that base
register.

INDEX is most useful in macros.

+ and - +A

-A

Unary plus. Unary minus. + and – can act on numeric and program-relative
expressions.

LEN :LEN:A Length of string A.

CHR :CHR:A One-character string, ASCII code A.

STR :STR:A Hexadecimal string of A.

STR returns an eight-digit hexadecimal string corresponding to a numeric
expression, or the string "T" or "F" if used on a logical expression.

NOT :NOT:A Bitwise complement of A.

LNOT :LNOT:A Logical complement of A.

DEF :DEF:A {TRUE} if A is defined, otherwise {FALSE}.

SB_OFFSET_19_12 :SB_OFFSET_19_12: label Bits[19:12] of (label – sb). See Example of use of :SB_OFFSET_19_12:
and :SB_OFFSET_11_ 0 on page 3-25

SB_OFFSET_11_0 :SB_OFFSET_11_0: label Least-significant 12 bytes of (label – sb).
3-24 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Assembler Reference
Example of use of :SB_OFFSET_19_12: and :SB_OFFSET_11_ 0

MyIndex EQU 0
 AREA area1, CODE
 LDR IP, [SB, #0]
 LDR IP, [IP, #MyIndex]
 ADD IP, IP, # :SB_OFFSET_19_12: label
 LDR PC, [IP, # :SB_OFFSET_11_0: label]

 AREA area2, DATA
label
 IMPORT FunctionAddress
 DCD FunctionAddress
 END

These operators can only be used in ADD and LDR instructions. They can only be used in
the way shown.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 3-25

Assembler Reference
3.6.10 Binary operators

Binary operators are written between the pair of subexpressions they operate on.
Operators of equal precedence are evaluated from left to right. The binary operators are
presented below in groups of equal precedence, in decreasing precedence order.

NoteNote

The order of precedence is not exactly the same as in C. armasm normally gives a
warning if your code contains an expression which would parse differently in C. You
can use brackets to make the precedence explicit.

The warning is not given if you use the -unsafe command line option.

Multiplicative operators

Multiplicative operators have the highest precedence of all binary operators. They act
only on numeric expressions.

Table 3-3 shows the multiplicative operators.

Table 3-3 Multiplicative operators

Operator Usage Explanation

* A*B Multiply

/ A/B Divide

MOD A:MOD:B A modulo B
3-26 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Assembler Reference
String manipulation operators

Table 3-4 shows the string manipulation operators.

In the two slicing operators LEFT and RIGHT:

• A must be a string

• B must be a numeric expression.

In CC, A and B must both be strings.

Shift operators

Shift operators act on numeric expressions, shifting or rotating the first operand by the
amount specified by the second.

Table 3-5 shows the shift operators.

NoteNote
SHR is a logical shift and does not propagate the sign bit.

Table 3-4 String manipulation operators

Operator Usage Explanation

LEFT A:LEFT:B The left-most B characters of A

RIGHT A:RIGHT:B The right-most B characters of A

CC A:CC:B B concatenated on to the end of A

Table 3-5 Shift operators

Operator Usage Explanation

ROL A:ROL:B Rotate A left by B bits

ROR A:ROR:B Rotate A right by B bits

SHL A:SHL:B Shift A left by B bits

SHR A:SHR:B Shift A right by B bits
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 3-27

Assembler Reference
Addition, subtraction, and logical operators

Addition and subtraction operators act on numeric expressions.

Logical operators act on numeric expressions. The operation is performed bitwise, that
is, independently on each bit of the operands to produce the result.

Table 3-6 shows addition, subtraction, and logical operators.

Table 3-6 Addition, subtraction, and logical operators

Operator Usage Explanation

+ A+B Add A to B

- A-B Subtract B from A

AND A:AND:B Bitwise AND of A and B

OR A:OR:B Bitwise OR of A and B

EOR A:EOR:B Bitwise Exclusive OR of A and B
3-28 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Assembler Reference
Relational operators

Table 3-7 shows the relational operators. These act on two operands of the same type to
produce a logical value.

The operands can be one of:

• numeric

• program-relative

• register-relative

• strings.

Strings are sorted using ASCII ordering. String A is less than string B if it is a leading
substring of string B, or if the left-most character in which the two strings differ is less
in string A than in string B.

Arithmetic values are unsigned, so the value of 0>-1 is {FALSE}.

Table 3-7 Relational operators

Operator Usage Explanation

= A=B A equal to B

> A>B A greater than B

>= A>=B A greater than or equal to B

< A<B A less than B

<= A<=B A less than or equal to B

/= A/=B A not equal to B

<> A<>B A not equal to B
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 3-29

Assembler Reference
Boolean operators

These are the operators with the lowest precedence. They perform the standard logical
operations on their operands.

In all three cases both A and B must be expressions that evaluate to either {TRUE} or
{FALSE}.

Table 3-8 shows the Boolean operators.

Table 3-8 Boolean operators

Operator Usage Explanation

LAND A:LAND:B Logical AND of A and B

LOR A:LOR:B Logical OR of A and B

LEOR A:LEOR:B Logical Exclusive OR of A and B
3-30 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Chapter 4-
ARM Instruction Reference

This chapter describes the ARM instructions that are supported by the ARM assembler.
It contains the following sections:

• Conditional execution on page 4-4

• ARM memory access instructions on page 4-6

• ARM general data processing instructions on page 4-23

• ARM multiply instructions on page 4-39

• ARM saturating arithmetic instructions on page 4-54

• ARM branch instructions on page 4-56

• ARM coprocessor instructions on page 4-61

• Miscellaneous ARM instructions on page 4-70

• ARM pseudo-instructions on page 4-76.

See to Table 4-1 on page 4-2 to locate individual instructions. Pseudo-instructions are
listed on page 4-76.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 4-1

ARM Instruction Reference
Table 4-1 Location of ARM instructions

Mnemonic Brief description Page Architecturea

ADC, ADD Add with carry, Add page 4-27 All

AND Logical AND page 4-30 All

B Branch page 4-57 All

BIC Bit clear page 4-30 All

BKPT Breakpoint page 4-74 5

BL Branch with link page 4-57 All

BLX Branch, link and exchange page 4-59 5Tb

BX Branch and exchange page 4-58 4Tb

CDP, CDP2 Coprocessor data operation page 4-62 2, 5

CLZ Count leading zeroes page 4-38 5

CMN, CMP Compare negative, Compare page 4-34 All

EOR Exclusive OR page 4-30 All

LDC, LDC2 Load coprocessor page 4-66 2, 5

LDM Load multiple registers page 4-18 All

LDR Load register page 4-6 All

MAR Move from registers to 40-bit accumulator page 4-75 XScalec

MCR, MCR2, MCRR Move from register(s) to coprocessor page 4-63 2, 5, 5Ed

MIA, MIAPH, MIAxy Multiply with internal 40-bit accumulate page 4-52 XScale

MLA Multiply accumulate page 4-40 2

MOV Move page 4-32 All

MRA Move from 40-bit accumulator to registers page 4-75 XScale

MRC, MRC2 Move from coprocessor to register page 4-64 2, 5

MRRC Move from coprocessor to 2 registers page 4-65 5Ed

MRS Move from PSR to register page 4-72 3

MSR Move from register to PSR page 4-73 3
4-2 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

ARM Instruction Reference
MUL Multiply page 4-40 2

MVN Move not page 4-32 All

ORR Logical OR page 4-30 All

PLD Cache preload page 4-20 5Ed

QADD, QDADD, QDSUB, QSUB Saturating arithmetic page 4-54 5ExPe

RSB, RSC, SBC Reverse sub, Reverse sub with carry, Sub with carry page 4-27 All

SMLAL Signed multiply-accumulate (64 <= 32 x 32 + 64) page 4-42 Mf

SMLALxy Signed multiply-accumulate (64 <= 16 x 16 + 64) page 4-50 5ExPe

SMLAWy Signed multiply-accumulate (32 <= 32 x 16 + 32) page 4-48 5ExPe

SMLAxy Signed multiply-accumulate (32 <= 16 x 16 + 32) page 4-45 5ExPe

SMULL Signed multiply (64 <= 32 x 32) page 4-42 Mf

SMULWy Signed multiply (32 <= 32 x 16) page 4-47 5ExPe

SMULxy Signed multiply (32 <= 16 x 16) page 4-44 5ExPe

STC, STC2 Store coprocessor page 4-66 2, 5ExPe

STM Store multiple registers page 4-18 All

STR Store register page 4-6 All

SUB Subtract page 4-27 All

SWI Software interrupt page 4-71 All

SWP Swap registers and memory page 4-22 3

TEQ, TST Test equivalence, Test page 4-36 All

UMLAL, UMULL Unsigned MLA, MUL (64 <= 32 x 32 (+ 64)) page 4-42 Mf

a. n : available in ARM architecture version n and above
b. nT : available in T variants of ARM architecture version n and above
c. Xscale: XScale coprocessor instructions
d. nE : available in E variants of ARM architecture version n and above, except ExP variants
e. nE : available in all E variants of ARM architecture version n and above, including ExP variants
f. M : available in ARM architecture version 3M, and 4 and above, except xM versions

Table 4-1 Location of ARM instructions (continued)

Mnemonic Brief description Page Architecturea
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 4-3

ARM Instruction Reference
4.1 Conditional execution

Almost all ARM instructions can include an optional condition code. This is shown in
syntax descriptions as {cond}. An instruction with a condition code is only executed if
the condition code flags in the CPSR meet the specified condition. The condition codes
that you can use are shown in Table 4-2.

Almost all ARM data processing instructions can optionally update the condition code
flags according to the result. To make an instruction update the flags, include the S suffix
as shown in the syntax description for the instruction.

Some instructions (CMP, CMN, TST and TEQ) do not require the S suffix. Their only function
is to update the flags. They always update the flags.

Flags are preserved until updated. A conditional instruction which is not executed has
no effect on the flags.

Table 4-2 ARM condition codes

Suffix Flags Meaning

EQ Z set Equal

NE Z clear Not equal

CS/HS C set Higher or same (unsigned >=)

CC/LO C clear Lower (unsigned <)

MI N set Negative

PL N clear Positive or zero

VS V set Overflow

VC V clear No overflow

HI C set and Z clear Higher (unsigned <=)

LS C clear or Z set Lower or same (unsigned <=)

GE N and V the same Signed >=

LT N and V different Signed <

GT Z clear, and N and V the same Signed >

LE Z set, or N and V different Signed <=

AL Any Always (usually omitted)
4-4 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

ARM Instruction Reference
Some instructions update a subset of the flags. The other flags are unchanged by these
instructions. Details are specified in the descriptions of the instructions.

You can execute an instruction conditionally, based upon the flags set in another
instruction, either:

• immediately after the instruction which updated the flags

• after any number of intervening instructions that have not updated the flags.

For further information, see Conditional execution on page 2-19.

4.1.1 The Q flag

The Q flag only exists in E variants of ARM architecture v5 and above. It is used to
detect saturation in special saturating arithmetic instructions (see QADD, QSUB,
QDADD, and QDSUB on page 4-54), or overflow in certain multiply instructions (see
SMLAxy on page 4-45 and SMLAWy on page 4-48).

The Q flag is a sticky flag. Although these instructions can set the flag, they cannot clear
it. You can execute a series of such instructions, and then test the flag to find out whether
saturation or overflow occurred at any point in the series, without needing to check the
flag after each instruction.

To clear the Q flag, use an MSR instruction (see MSR on page 4-73).

The state of the Q flag cannot be tested directly by the condition codes. To read the state
of the Q flag, use an MRS instruction (see MRS on page 4-72).
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 4-5

ARM Instruction Reference
4.2 ARM memory access instructions

This section contains the following subsections:

• LDR and STR, words and unsigned bytes on page 4-7

Load register and store register, 32-bit word or 8-bit unsigned byte.

• LDR and STR, halfwords and signed bytes on page 4-12

Load register, signed 8-bit bytes and signed and unsigned 16-bit halfwords.

Store register, 16-bit halfwords.

• LDR and STR, doublewords on page 4-15

Load two consecutive registers and store two consecutive registers.

• LDM and STM on page 4-18

Load and store multiple registers.

• PLD on page 4-20

Cache preload.

• SWP on page 4-22

Swap data between registers and memory.

There are is also an LDR pseudo-instruction (see LDR ARM pseudo-instruction on
page 4-80). This pseudo-instruction sometimes assembles to an LDR instruction, and
sometimes to a MOV or MVN instruction.
4-6 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

ARM Instruction Reference
4.2.1 LDR and STR, words and unsigned bytes

Load register and store register, 32-bit word or 8-bit unsigned byte. Byte loads are
zero-extended to 32 bits.

Syntax

Both LDR and STR have four possible forms:

• zero offset

• pre-indexed offset

• program-relative

• post-indexed offset.

The syntax of the four forms, in the same order, are:

op{cond}{B}{T} Rd, [Rn]

op{cond}{B} Rd, [Rn, FlexOffset]{!}

op{cond}{B} Rd, label

op{cond}{B}{T} Rd, [Rn], FlexOffset

where:

op is either LDR (Load Register) or STR (Store Register).

cond is an optional condition code (see Conditional execution on page 4-4).

B is an optional suffix. If B is present, the least significant byte of Rd is
transferred. If op is LDR, the other bytes of Rd are cleared.

Otherwise, a 32-bit word is transferred.

T is an optional suffix. If T is present, the memory system treats the access
as though the processor was in User mode, even if it is in a privileged
mode (see Processor mode on page 2-4). T has no effect in User mode.
You cannot use T with a pre-indexed offset.

Rd is the ARM register to load or save.

Rn is the register on which the memory address is based.

Rn must not be the same as Rd, if the instruction:

• is pre-indexed with writeback (the ! suffix)

• is post-indexed

• uses the T suffix.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 4-7

ARM Instruction Reference
FlexOffset is a flexible offset applied to the value in Rn (see Flexible offset syntax on
page 4-9).

label is a program-relative expression. See Register-relative and
program-relative expressions on page 3-23 for more information.

label must be within ±4KB of the current instruction.

! is an optional suffix. If ! is present, the address including the offset is
written back into Rn. You cannot use the ! suffix if Rn is r15.

Zero offset

The value in Rn is used as the address for the transfer.

Pre-indexed offset

The offset is applied to the value in Rn before the data transfer takes place. The result is
used as the memory address for the transfer. If the ! suffix is used, the result is written
back into Rn. Rn must not be r15 if the !suffix is used.

Program-relative

This is an alternative version of the pre-indexed form. The assembler calculates the
offset from the PC for you, and generates a pre-indexed instruction with the PC as Rn.

You cannot use the ! suffix.

Post-indexed offset

The value in Rn is used as the memory address for the transfer. The offset is applied to
the value in Rn after the data transfer takes place. The result is written back into Rn. Rn
must not be r15.
4-8 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

ARM Instruction Reference
Flexible offset syntax

Both pre-indexed and post-indexed offsets can be either of the following:

#expr

{-}Rm{, shift}

where:

- is an optional minus sign. If - is present, the offset is subtracted from Rn.
Otherwise, the offset is added to Rn.

expr is an expression evaluating to an integer in the range –4095 to +4095.
This is often a numeric constant (see examples below).

Rm is a register containing a value to be used as the offset. Rm must not be R15.

shift is an optional shift to be applied to Rm. It can be any one of:

ASR n arithmetic shift right n bits. 1 ≤ n ≤ 32.

LSL n logical shift left n bits. 0 ≤ n ≤ 31.

LSR n logical shift right n bits. 1 ≤ n ≤ 32.

ROR n rotate right n bits. 1 ≤ n ≤ 31.

RRX rotate right one bit, with extend.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 4-9

ARM Instruction Reference
Address alignment for word transfers

In most circumstances, you must ensure that addresses for 32-bit transfers are 32-bit
word-aligned.

If your system has a system coprocessor (cp15), you can enable alignment checking.
Non word-aligned 32-bit transfers cause an alignment exception if alignment checking
is enabled.

If your system does not have a system coprocessor (cp15), or alignment checking is
disabled:

• For STR, the specified address is rounded down to a multiple of four.

• For LDR:

1. The specified address is rounded down to a multiple of four.

2. Four bytes of data are loaded from the resulting address.

3. The loaded data is rotated right by one, two or three bytes according to bits
[1:0] of the address.

For a little-endian memory system, this causes the addressed byte to occupy the
least significant byte of the register.

For a big-endian memory system, it causes the addressed byte to occupy:

— bits[31:24] if bit[0] of the address is 0

— bits[15:8] if bit[0] of the address is 1.

Loading to r15

A load to r15 (the program counter) causes a branch to the instruction at the address
loaded.

Bits[1:0] of the value loaded:

• are ignored in ARM architecture v3 and below

• must be zero in non-T variants of ARM architecture v4 and above.

In T variants of ARM architecture v5 and above:

• bits[1:0] of a value loaded to r15 must not have the value 0b10

• if bit[0] of a value loaded to r15 is set, the processor changes to Thumb state.

You cannot use the B or T suffixes when loading to r15.
4-10 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

ARM Instruction Reference
Saving from r15

In general, avoid saving from R15 if possible.

If you do save from R15, the value saved is the address of the current instruction, plus
an implementation-defined constant. The constant is always the same for a particular
processor.

If your assembled code might be used on different processors, you can find out what the
constant is at runtime using code like the following:

 SUB R1, PC, #4 ; R1 = address of following STR instruction
 STR PC, [R0] ; Store address of STR instruction + offset,
 LDR R0, [R0] ; then reload it
 SUB R0, R0, R1 ; Calculate the offset as the difference

If your code is to be assembled for a particular processor, the value of the constant is
available in armasm as {PCSTOREOFFSET}.

Architectures

These instructions are available in all versions of the ARM architecture.

In T variants of ARM architecture v5 and above, a load to r15 causes a change to
executing Thumb instructions if bit[0] of the value loaded is set.

Examples

 LDR r8,[r10] ; loads r8 from the address in r10.

 LDRNE r2,[r5,#960]! ; (conditionally) loads r2 from a word
 ; 960 bytes above the address in r5, and
 ; increments r5 by 960.

 STR r2,[r9,#consta-struc] ; consta-struc is an expression evaluating
 ; to a constant in the range 0-4095.

 STRB r0,[r3,-r8,ASR #2] ; stores the least significant byte from
 ; r0 to a byte at an address equal to
 ; contents(r3) minus contents(r9)/4.
 ; r3 and r8 are not altered.

 STR r5,[r7],#-8 ; stores a word from r5 to the address
 ; in r7, and then decrements r7 by 8.

 LDR r0,localdata ; loads a word located at label localdata
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 4-11

ARM Instruction Reference
4.2.2 LDR and STR, halfwords and signed bytes

Load register, signed 8-bit bytes and signed and unsigned 16-bit halfwords.

Store register, 16-bit halfwords.

Signed loads are sign-extended to 32 bits. Unsigned halfword loads are zero-extended
to 32 bits.

Syntax

These instructions have four possible forms:

• zero offset

• pre-indexed offset

• program-relative

• post-indexed offset.

The syntax of the four forms, in the same order, are:

op{cond}type Rd, [Rn]

op{cond}type Rd, [Rn, Offset]{!}

op{cond}type Rd, label

op{cond}type Rd, [Rn], Offset

where:

op is either LDR or STR.

cond is an optional condition code (see Conditional execution on page 4-4).

type must be one of:

SH for Signed Halfword (LDR only)

H for unsigned Halfword

SB for Signed Byte (LDR only).

Rd is the ARM register to load or save.

Rn is the register on which the memory address is based.

Rn must not be the same as Rd, if the instruction is either:

• pre-indexed with writeback

• post-indexed.
4-12 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

ARM Instruction Reference
label is a program-relative expression. See Register-relative and
program-relative expressions on page 3-23 for more information. label
must be within ±255 bytes of the current instruction.

Offset is an offset applied to the value in Rn (see Offset syntax on page 4-13).

! is an optional suffix. If ! is present, the address including the offset is
written back into Rn. You cannot use the ! suffix if Rn is r15.

Zero offset

The value in Rn is used as the address for the transfer.

Pre-indexed offset

The offset is applied to the value in Rn before the transfer takes place. The result is used
as the memory address for the transfer. If the ! suffix is used, the result is written back
into Rn.

Program-relative

This is an alternative version of the pre-indexed form. The assembler calculates the
offset from the PC for you, and generates a pre-indexed instruction with the PC as Rn.

You cannot use the ! suffix.

Post-indexed offset

The value in Rn is used as the memory address for the transfer. The offset is applied to
the value in Rn after the transfer takes place. The result is written back into Rn.

Offset syntax

Both pre-indexed and post-indexed offsets can be either of the following:

#expr

{-}Rm

where:

- is an optional minus sign. If - is present, the offset is subtracted from Rn.
Otherwise, the offset is added to Rn.

expr is an expression evaluating to an integer in the range –255 to +255. This
is often a numeric constant (see examples below).
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 4-13

ARM Instruction Reference
Rm is a register containing a value to be used as the offset.

The offset syntax is the same for LDR and STR, doublewords on page 4-15.

Address alignment for halfword transfers

The address must be even for halfword transfers.

If your system has a system coprocessor (cp15), you can enable alignment checking.
Non halfword-aligned 16-bit transfers cause an alignment exception if alignment
checking is enabled.

If your system does not have a system coprocessor (cp15), or alignment checking is
disabled:

• a non halfword-aligned 16-bit load corrupts Rd

• a non halfword-aligned 16-bit save corrupts two bytes at [address] and
[address–1].

Loading to r15

You cannot load halfwords or bytes to r15.

Architectures

These instructions are available in ARM architecture v4 and above.

Examples

 LDREQSH r11,[r6] ; (conditionally) loads r11 with a 16-bit halfword
 ; from the address in r6. Sign extends to 32 bits.

 LDRH r1,[r0,#22] ; load r1 with a 16 bit halfword from 22 bytes
 ; above the address in r0. Zero extend to 32 bits.

 STRH r4,[r0,r1]! ; store the least significant halfword from r4
 ; to two bytes at an address equal to contents(r0)
 ; plus contents(r1). Write address back into r0.

 LDRSB r6,constf ; load a byte located at label constf. Sign extend.

Incorrect example

 LDRSB r1,[r6],r3,LSL#4 ; This format is only available for word and
 ; unsigned byte transfers.
4-14 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

ARM Instruction Reference
4.2.3 LDR and STR, doublewords

Load two consecutive registers and store two consecutive registers, 64-bit doubleword.

Syntax

These instructions have four possible forms:

• zero offset

• pre-indexed offset

• program-relative

• post-indexed offset.

The syntax of the four forms are, in the same order:

op{cond}D Rd, [Rn]

op{cond}D Rd, [Rn, Offset]{!}

op{cond}D Rd, label

op{cond}D Rd, [Rn], Offset

where:

op is either LDR or STR.

cond is an optional condition code (see Conditional execution on page 4-4).

Rd is one of the ARM registers to load or save. The other one is R(d+1). Rd
must be an even numbered register, and not R14.

Rn is the register on which the memory address is based.

Rn must not be the same as Rd or R(d+1), unless the instruction is either:

• zero offset

• pre-indexed without writeback.

Offset is an offset applied to the value in Rn (see Offset syntax on page 4-16).

label is a program-relative expression. See Register-relative and
program-relative expressions on page 3-23 for more information.

label must be within ±252 bytes of the current instruction.

! is an optional suffix. If ! is present, the final address including the offset
is written back into Rn.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 4-15

ARM Instruction Reference
Zero offset

The value in Rn is used as the address for the transfer.

Pre-indexed offset

The offset is applied to the value in Rn before the transfers take place. The result is used
as the memory address for the transfers. If the ! suffix is used, the address is written
back into Rn.

Program-relative

This is an alternative version of the pre-indexed form. The assembler calculates the
offset from the PC for you, and generates a pre-indexed instruction with the PC as Rn.

You cannot use the ! suffix.

Post-indexed offset

The value in Rn is used as the memory address for the transfer. The offset is applied to
the value in Rn after the transfer takes place. The result is written back into Rn.

Offset syntax

Both pre-indexed and post-indexed offsets can be either of the following:

#expr

{-}Rm

where:

- is an optional minus sign. If - is present, the offset is subtracted from Rn.
Otherwise, the offset is added to Rn.

expr is an expression evaluating to an integer in the range –255 to +255. This
is often a numeric constant (see examples below).

Rm is a register containing a value to be used as the offset. For loads, Rm must
not be the same as Rd or R(d+1).

This is the same offset syntax as for LDR and STR, halfwords and signed bytes on
page 4-12.

Address alignment

The address must be a multiple of eight for doubleword transfers.
4-16 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

ARM Instruction Reference
If your system has a system coprocessor, you can enable alignment checking. Non
doubleword-aligned 64-bit transfers cause an alignment exception if alignment
checking is enabled.

Architectures

These instructions are available in E variants of ARM architecture v5 and above.

Examples

 LDRD r6,[r11]
 LDRMID r4,[r7],r2
 STRD r4,[r9,#24]
 STRD r0,[r9,-r2]!
 LDREQD r8,abc4

Incorrect examples

 LDRD r1,[r6] ; Rd must be even.
 STRD r14,[r9,#36] ; Rd must not be r14.
 STRD r2,[r3],r6 ; Rn must not be Rd or R(d+1).
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 4-17

ARM Instruction Reference
4.2.4 LDM and STM

Load and store multiple registers. Any combination of registers r0 to r15 can be
transferred.

Syntax

op{cond}mode Rn{!}, reglist{^}

where:

op is either LDM or STM.

cond is an optional condition code (see Conditional execution on page 4-4).

mode is any one of the following:

IA increment address after each transfer

IB increment address before each transfer

DA decrement address after each transfer

DB decrement address before each transfer

FD full descending stack

ED empty descending stack

FA full ascending stack

EA empty ascending stack.

Rn is the base register, the ARM register containing the initial address for
the transfer. Rn must not be r15.

! is an optional suffix. If ! is present, the final address is written back into
Rn.

reglist is a list of registers to be loaded or stored, enclosed in braces. It can
contain register ranges. It must be comma separated if it contains more
than one register or register range (see Examples on page 4-19).

^ is an optional suffix. You must not use it in User mode or System mode.
It has two purposes:

• If op is LDM and reglist contains the pc (r15), in addition to the
normal multiple register transfer, the SPSR is copied into the CPSR.
This is for returning from exception handlers. Use this only from
exception modes.

• Otherwise, data is transferred into or out of the User mode registers
instead of the current mode registers.
4-18 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

ARM Instruction Reference
Non word-aligned addresses

These instructions ignore bits [1:0] of the address. (On a system with a system
coprocessor, if alignment checking is enabled, nonzero values in these bits cause an
alignment exception.)

Loading to r15

A load to r15 (the program counter) causes a branch to the instruction at the address
loaded. In T variants of ARM architecture v5 and above, a load to r15 causes a change
to executing Thumb instructions if bit 0 of the value loaded is set.

Loading or storing the base register, with writeback

If Rn is in reglist, and writeback is specified with the ! suffix:

• if op is STM and Rn is the lowest-numbered register in reglist, the initial value of
Rn is stored

• otherwise, the loaded or stored value of Rn is unpredictable.

Architectures

These instructions are available in all versions of the ARM architecture.

In T variants of ARM architecture v5 and above, a load to r15 causes a change to
executing Thumb instructions if bit 0 of the value loaded is set.

Examples

 LDMIA r8,{r0,r2,r9}
 STMDB r1!,{r3-r6,r11,r12}
 STMFD r13!,{r0,r4-r7,LR} ; Push registers including the
 ; stack pointer
 LDMFD r13!,{r0,r4-r7,PC} ; Pop the same registers and
 ; return from subroutine

Incorrect examples

 STMIA r5!,{r5,r4,r9} ; value stored for r5 unpredictable
 LDMDA r2, {} ; must be at least one register in list
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 4-19

ARM Instruction Reference
4.2.5 PLD

Cache preload.

Syntax

PLD [Rn{, FlexOffset}]

where:

Rn is the register on which the memory address is based.

FlexOffset is an optional flexible offset applied to the value in Rn.

FlexOffset can be either of the following:

#expr

{-}Rm{, shift}

where:

- is an optional minus sign. If - is present, the offset is subtracted
from Rn. Otherwise, the offset is added to Rn.

expr is an expression evaluating to an integer in the range –4095 to
+4095. This is often a numeric constant.

Rm is a register containing a value to be used as the offset.

shift is an optional shift to be applied to Rm. It can be any one of:

ASR n arithmetic shift right n bits. 1 ≤ n ≤ 32.

LSL n logical shift left n bits. 0 ≤ n ≤ 31.

LSR n logical shift right n bits. 1 ≤ n ≤ 32.

ROR n rotate right n bits. 1 ≤ n ≤ 31.

RRX rotate right one bit, with extend.

This is the same offset syntax as for LDR and STR, words and unsigned
bytes on page 4-7.

Usage

Use PLD to hint to the memory system that there is likely to be a load from the specified
address within the next few instructions. The memory system can use this to speed up
later memory accesses.

Alignment

There are no alignment restrictions on the address. If a system control coprocessor
(cp15) is present then it will not generate an alignment exception for any PLD instruction
4-20 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

ARM Instruction Reference
Architectures

This instruction is available in E variants of ARM architecture v5 and above.

Examples

 PLD [r2]
 PLD [r15,#280]
 PLD [r9,#-2481]
 PLD [r0,#av*4] ; av * 4 must evaluate, at assembly time, to
 ; an integer in the range -4095 to +4095
 PLD [r0,r2]
 PLD [r5,r8,LSL 2]
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 4-21

ARM Instruction Reference
4.2.6 SWP

Swap data between registers and memory.

Use SWP to implement semaphores.

Syntax

SWP{cond}{B} Rd, Rm, [Rn]

where:

cond is an optional condition code (see Conditional execution on page 4-4).

B is an optional suffix. If B is present, a byte is swapped. Otherwise, a 32-bit
word is swapped.

Rd is an ARM register. Data from memory is loaded into Rd.

Rm is an ARM register. The contents of Rm is saved to memory.

Rm can be the same register as Rd. In this case, the contents of the register
is swapped with the contents of the memory location.

Rn is an ARM register. The contents of Rn specify the address in memory
with which data is to be swapped. Rn must be a different register from
both Rd and Rm.

Non word-aligned addresses

Non word-aligned addresses are handled in exactly the same way as an LDR and an STR

instruction (see Address alignment for word transfers on page 4-10).

Architectures

These instructions are available in ARM architecture versions 2a and 3 and above.
4-22 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

ARM Instruction Reference
4.3 ARM general data processing instructions

This section contains the following subsections:

• Flexible second operand on page 4-24

• ADD, SUB, RSB, ADC, SBC, and RSC on page 4-27

Add, subtract, and reverse subtract, each with or without carry

• AND, ORR, EOR, and BIC on page 4-30

Logical AND, OR, Exclusive OR and Bit Clear

• MOV and MVN on page 4-32

Move and Move Not

• CMP and CMN on page 4-34

Compare and Compare Negative

• TST and TEQ on page 4-36

Test and Test Equivalence

• CLZ on page 4-38

Count Leading Zeroes.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 4-23

ARM Instruction Reference
4.3.1 Flexible second operand

Most ARM general data processing instructions have a flexible second operand. This is
shown as Operand2 in the descriptions of the syntax of each instruction.

Syntax

Operand2 has two possible forms:

#immed_8r

Rm{, shift}

where:

immed_8r is an expression evaluating to a numeric constant. The constant must
correspond to an 8-bit pattern rotated by an even number of bits within a
32-bit word (but see Instruction substitution on page 4-26).

Rm is the ARM register holding the data for the second operand. The bit
pattern in the register can be shifted or rotated in various ways.

shift is an optional shift to be applied to Rm. It can be any one of:

ASR n arithmetic shift right n bits. 1 ≤ n ≤ 32.

LSL n logical shift left n bits. 0 ≤ n ≤ 31.

LSR n logical shift right n bits. 1 ≤ n ≤ 32.

ROR n rotate right n bits. 1 ≤ n ≤ 31.

RRX rotate right one bit, with extend.

type Rs where:

type is one of ASR, LSL, LSR, ROR.

Rs is an ARM register supplying the shift amount.
Only the least significant byte is used.

NoteNote

The result of the shift operation is used as Operand2 in the instruction, but
Rm itself is not altered.

ASR

Arithmetic shift right by n bits divides the value contained in Rm by 2n, if the contents
are regarded as a two’s complement signed integer. The original bit[31] is copied into
the left-hand n bits of the register.
4-24 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

ARM Instruction Reference
LSR and LSL

Logical shift right by n bits divides the value contained in Rm by 2n, if the contents are
regarded as an unsigned integer. The left-hand n bits of the register are set to 0.

Logical shift left by n bits multiplies the value contained in Rm by 2n, if the contents are
regarded as an unsigned integer. Overflow may occur without warning. The right-hand
n bits of the register are set to 0.

ROR

Rotate right by n bits moves the right-hand n bits of the register into the left-hand n bits
of the result. At the same time, all other bits are moved right by n bits (see Figure 4-1).

Figure 4-1 ROR

RRX

Rotate right with extend shifts the contents of Rm right by one bit. The carry flag is
copied into bit[31] of Rm (see Figure 4-2).

The old value of bit[0] of Rm is shifted out to the carry flag if the S suffix is specified (see
The carry flag on page 4-26).

Figure 4-2 RRX

�� � �

�����
�	�

���

�� �� � �
�����
�	�

��� ���
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 4-25

ARM Instruction Reference
The carry flag

The carry flag is updated to the last bit shifted out of Rm, if the instruction is any one of
the following:

• MOV, MVN, AND, ORR, EOR or BIC, if you use the S suffix

• TEQ or TST, for which no S suffix is required.

Instruction substitution

Certain pairs of instructions (ADD and SUB, ADC and SBC, AND and BIC, MOV and MVN, CMP and
CMN) are equivalent except for the negation or logical inversion of immed_8r.

If a value of immed_8r cannot be expressed as a rotated 8-bit pattern, but its logical
inverse or negation could be, the assembler substitutes the other instruction of the pair
and inverts or negates immed_8r.

Be aware of this when comparing disassembly listings with source code.

Examples

 ADD r3,r7,#1020 ; immed_8r. 1020 is 0xFF rotated right by 30 bits.
 AND r0,r5,r2 ; r2 contains the data for Operand2.
 SUB r11,r12,r3,ASR #5 ; Operand2 is the contents of r3 divided by 32.
 MOVS r4,r4, LSR #32 ; Updates the C flag to r4 bit 31. Clears r4 to 0.

Incorrect examples

 ADD r3,r7,#1023 ; 1023 (0x3FF) is not a rotated 8-bit pattern.
 SUB r11,r12,r3,LSL #32 ; #32 is out of range for LSL.
 MOVS r4,r4,RRX #3 ; Do not specify a shift amount for RRX. RRX is
 ; always a one-bit shift.
4-26 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

ARM Instruction Reference
4.3.2 ADD, SUB, RSB, ADC, SBC, and RSC

Add, subtract, and reverse subtract, each with or without carry.

Syntax

op{cond}{S} Rd, Rn, Operand2

where:

op is one of ADD, SUB, RSB, ADC, SBC, or RSC.

cond is an optional condition code (see Conditional execution on page 4-4).

S is an optional suffix. If S is specified, the condition code flags are updated
on the result of the operation (see Conditional execution on page 4-4).

Rd is the ARM register for the result.

Rn is the ARM register holding the first operand.

Operand2 is a flexible second operand. See Flexible second operand on page 4-24
for details of the options.

Usage

The ADD instruction adds the values in Rn and Operand2.

The SUB instruction subtracts the value of Operand2 from the value in Rn.

The RSB (Reverse SuBtract) instruction subtracts the value in Rn from the value of
Operand2. This is useful because of the wide range of options for Operand2.

ADC, SBC, and RSC are used to synthesize multiword arithmetic (see Multiword arithmetic
examples on page 4-28).

The ADC (ADd with Carry) instruction adds the values in Rn and Operand2, together with
the carry flag.

The SBC (SuBtract with Carry) instruction subtracts the value of Operand2 from the value
in Rn. If the carry flag is clear, the result is reduced by one.

The RSC (Reverse Subtract with Carry) instruction subtracts the value in Rn from the
value of Operand2. If the carry flag is clear, the result is reduced by one.

In certain circumstances, the assembler can substitute one instruction for another. Be
aware of this when reading disassembly listings. See Instruction substitution on
page 4-26 for details.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 4-27

ARM Instruction Reference
Condition flags

If S is specified, these instructions update the N, Z, C and V flags according to the result.

Use of R15

If you use R15 as Rn, the value used is the address of the instruction plus 8.

If you use R15 as Rd:

• Execution branches to the address corresponding to the result.

• If you use the S suffix, the SPSR of the current mode is copied to the CPSR. You
can use this to return from exceptions (see the Handling Processor Exceptions
chapter in ADS Developer Guide).

Caution

Do not use the S suffix when using R15 as Rd in User mode or System mode. The effect
of such an instruction is unpredictable, but the assembler cannot warn you at assembly
time.

You cannot use R15 for Rd or any operand in any data processing instruction that has a
register-controlled shift (see Flexible second operand on page 4-24).

Architectures

These instructions are available in all versions of the ARM architecture.

Examples

 ADD r2,r1,r3
 SUBS r8,r6,#240 ; sets the flags on the result
 RSB r4,r4,#1280 ; subtracts contents of r4 from 1280
 ADCHI r11,r0,r3 ; only executed if C flag set and Z
 ; flag clear
 RSCLES r0,r5,r0,LSL r4 ; conditional, flags set

Incorrect example

 RSCLES r0,r15,r0,LSL r4 ; r15 not allowed with register
 ; controlled shift

Multiword arithmetic examples

These two instructions add a 64-bit integer contained in r2 and r3 to another 64-bit
integer contained in r0 and r1, and place the result in r4 and r5.
4-28 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

ARM Instruction Reference
 ADDS r4,r0,r2 ; adding the least significant words
 ADC r5,r1,r3 ; adding the most significant words

These instructions subtract one 96-bit integer from another:

 SUBS r3,r6,r9
 SBCS r4,r7,r10
 SBC r5,r8,r11

For clarity, the above examples use consecutive registers for multiword values. There
is no requirement to do this. The following, for example, is perfectly valid:

 SUBS r6,r6,r9
 SBCS r9,r2,r1
 SBC r2,r8,r11
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 4-29

ARM Instruction Reference
4.3.3 AND, ORR, EOR, and BIC

Logical AND, OR, Exclusive OR and Bit Clear.

Syntax

op{cond}{S} Rd, Rn, Operand2

where:

op is one of AND, ORR, EOR, or BIC.

cond is an optional condition code (see Conditional execution on page 4-4).

S is an optional suffix. If S is specified, the condition code flags are updated
on the result of the operation (see Conditional execution on page 4-4).

Rd is the ARM register for the result.

Rn is the ARM register holding the first operand.

Operand2 is a flexible second operand. See Flexible second operand on page 4-24
for details of the options.

Usage

The AND, EOR, and ORR instructions perform bitwise AND, Exclusive OR, and OR
operations on the values in Rn and Operand2.

The BIC (BIt Clear) instruction performs an AND operation on the bits in Rn with the
complements of the corresponding bits in the value of Operand2.

In certain circumstances, the assembler can substitute BIC for AND, or AND for BIC. Be
aware of this when reading disassembly listings. See Instruction substitution on
page 4-26 for details.

Condition flags

If S is specified, these instructions:

• update the N and Z flags according to the result

• can update the C flag during the calculation of Operand2 (see Flexible second
operand on page 4-24)

• do not affect the V flag.
4-30 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

ARM Instruction Reference
Use of R15

If you use R15 as Rn, the value used is the address of the instruction plus 8.

If you use R15 as Rd:

• Execution branches to the address corresponding to the result.

• If you use the S suffix, the SPSR of the current mode is copied to the CPSR. You
can use this to return from exceptions (see the Handling Processor Exceptions
chapter in ADS Developer Guide).

Caution

Do not use the S suffix when using R15 as Rd in User mode or System mode. The effect
of such an instruction is unpredictable, but the assembler cannot warn you at assembly
time.

You cannot use R15 for Rd or any operand in any data processing instruction that has a
register-controlled shift (see Flexible second operand on page 4-24).

Architectures

These instructions are available in all versions of the ARM architecture.

Examples

 AND r9,r2,#0xFF00
 ORREQ r2,r0,r5
 EORS r0,r0,r3,ROR r6
 BICNES r8,r10,r0,RRX

Incorrect example

 EORS r0,r15,r3,ROR r6 ; r15 not allowed with register
 ; controlled shift
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 4-31

ARM Instruction Reference
4.3.4 MOV and MVN

Move and Move Not.

Syntax

MOV{cond}{S} Rd, Operand2

MVN{cond}{S} Rd, Operand2

where:

cond is an optional condition code (see Conditional execution on page 4-4).

S is an optional suffix. If S is specified, the condition code flags are updated
on the result of the operation (see Conditional execution on page 4-4).

Rd is the ARM register for the result.

Operand2 is a flexible second operand. See Flexible second operand on page 4-24
for details of the options.

Usage

The MOV instruction copies the value of Operand2 into Rd.

The MVN instruction takes the value of Operand2, performs a bitwise logical NOT
operation on the value, and places the result into Rd.

In certain circumstances, the assembler can substitute MVN for MOV, or MOV for MVN. Be
aware of this when reading disassembly listings. See Instruction substitution on
page 4-26 for details.

Condition flags

If S is specified, these instructions:

• update the N and Z flags according to the result

• can update the C flag during the calculation of Operand2 (see Flexible second
operand on page 4-24)

• do not affect the V flag.
4-32 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

ARM Instruction Reference
Use of R15

If you use R15 as Rn, the value used is the address of the instruction plus 8.

If you use R15 as Rd:

• Execution branches to the address corresponding to the result.

• If you use the S suffix, the SPSR of the current mode is copied to the CPSR. You
can use this to return from exceptions (see the Handling Processor Exceptions
chapter in ADS Developer Guide).

Caution

Do not use the S suffix when using R15 as Rd in User mode or System mode. The effect
of such an instruction is unpredictable, but the assembler cannot warn you at assembly
time.

You cannot use R15 for Rd or any operand in any data processing instruction that has a
register-controlled shift (see Flexible second operand on page 4-24).

Architectures

These instructions are available in all versions of the ARM architecture.

Examples

 MOV r5,r2
 MVNNE r11,#0xF000000B
 MOVS r0,r0,ASR r3

Incorrect examples

 MVN r15,r3,ASR r0 ; r15 not allowed with register
 ; controlled shift
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 4-33

ARM Instruction Reference
4.3.5 CMP and CMN

Compare and Compare Negative.

Syntax

CMP{cond} Rn, Operand2

CMN{cond} Rn, Operand2

where:

cond is an optional condition code (see Conditional execution on page 4-4).

Rn is the ARM register holding the first operand.

Operand2 is a flexible second operand. See Flexible second operand on page 4-24
for details of the options.

Usage

These instructions compare the value in a register with Operand2. They update the
condition flags on the result, but do not place the result in any register.

The CMP instruction subtracts the value of Operand2 from the value in Rn. This is the same
as a SUBS instruction, except that the result is discarded.

The CMN instruction adds the value of Operand2 to the value in Rn. This is the same as an
ADDS instruction, except that the result is discarded.

In certain circumstances, the assembler can substitute CMN for CMP, or CMP for CMN. Be
aware of this when reading disassembly listings. See Instruction substitution on
page 4-26 for details.

Condition flags

These instructions update the N, Z, C and V flags according to the result.

Use of R15

If you use R15 as Rn, the value used is the address of the instruction plus 8.

You cannot use R15 for any operand in any data processing instruction that has a
register-controlled shift (see Flexible second operand on page 4-24).
4-34 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

ARM Instruction Reference
Architectures

These instructions are available in all versions of the ARM architecture.

Examples

 CMP r2,r9
 CMN r0,#6400
 CMPGT r13,r7,LSL #2

Incorrect example

 CMP r2,r15,ASR r0 ; r15 not allowed with register
 ; controlled shift
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 4-35

ARM Instruction Reference
4.3.6 TST and TEQ

Test and Test Equivalence.

Syntax

TST{cond} Rn, Operand2

TEQ{cond} Rn, Operand2

where:

cond is an optional condition code (see Conditional execution on page 4-4).

Rn is the ARM register holding the first operand.

Operand2 is a flexible second operand. See Flexible second operand on page 4-24
for details of the options.

Usage

These instructions test the value in a register against Operand2. They update the
condition flags on the result, but do not place the result in any register.

The TST instruction performs a bitwise AND operation on the value in Rn and the value
of Operand2. This is the same as a ANDS instruction, except that the result is discarded.

The TEQ instruction performs a bitwise Exclusive OR operation on the value in Rn and
the value of Operand2. This is the same as a EORS instruction, except that the result is
discarded.

Condition flags

These instructions:

• update the N and Z flags according to the result

• can update the C flag during the calculation of Operand2 (see Flexible second
operand on page 4-24)

• do not affect the V flag.

Use of R15

If you use R15 as Rn, the value used is the address of the instruction plus 8.

You cannot use R15 for any operand in any data processing instruction that has a
register-controlled shift (see Flexible second operand on page 4-24).
4-36 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

ARM Instruction Reference
Architectures

These instructions are available in all versions of the ARM architecture.

Examples

 TST r0,#0x3F8
 TEQEQ r10,r9
 TSTNE r1,r5,ASR r1

Incorrect example

 TEQ r15,r1,ROR r0 ; r15 not allowed with register
 ; controlled shift
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 4-37

ARM Instruction Reference
4.3.7 CLZ

Count Leading Zeroes.

Syntax

CLZ{cond} Rd, Rm

where:

cond is an optional condition code (see Conditional execution on page 4-4).

Rd is the ARM register for the result. Rd must not be r15.

Rm is the operand register.

Usage

The CLZ instruction counts the number of leading zeroes in the value in Rm and returns
the result in Rd. The result value is 32 if no bits are set in the source register, and zero if
bit 31 is set.

Condition flags

This instruction does not affect the flags.

Architectures

This instruction is available in ARM architecture versions 5 and above.

Examples

 CLZ r4,r9
 CLZNE r2,r3
4-38 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

ARM Instruction Reference
4.4 ARM multiply instructions

This section contains the following subsections:

• MUL and MLA on page 4-40

Multiply and multiply-accumulate (32-bit by 32-bit, bottom 32-bit result).

• UMULL, UMLAL, SMULL and SMLAL on page 4-42

Unsigned and signed long multiply and multiply accumulate (32-bit by 32-bit,
64-bit accumulate or result).

• SMULxy on page 4-44

Signed multiply (16-bit by 16-bit, 32-bit result).

• SMLAxy on page 4-45

Signed multiply-accumulate (16-bit by 16-bit, 32-bit accumulate).

• SMULWy on page 4-47

Signed multiply (32-bit by 16-bit, top 32-bit result).

• SMLAWy on page 4-48

Signed multiply-accumulate (32-bit by 16-bit, top 32-bit accumulate).

• SMLALxy on page 4-50

Signed multiply-accumulate (16-bit by 16-bit, 64-bit accumulate).

• MIA, MIAPH, and MIAxy on page 4-52

XScale coprocessor 0 instructions.

Multiply with internal accumulate (32-bit by 32-bit, 40-bit accumulate).

Multiply with internal accumulate, packed halfwords (16-bit by 16-bit twice,
40-bit accumulate).

Multiply with internal accumulate (16-bit by 16-bit, 40-bit accumulate).
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 4-39

ARM Instruction Reference
4.4.1 MUL and MLA

Multiply and multiply-accumulate (32-bit by 32-bit, bottom 32-bit result).

Syntax

MUL{cond}{S} Rd, Rm, Rs

MLA{cond}{S} Rd, Rm, Rs, Rn

where:

cond is an optional condition code (see Conditional execution on page 4-4).

S is an optional suffix. If S is specified, the condition code flags are updated
on the result of the operation (see Conditional execution on page 4-4).

Rd is the ARM register for the result.

Rm, Rs, Rn are ARM registers holding the operands.

R15 cannot be used for any of Rd, Rm, Rs, or Rn.

Rd cannot be the same as Rm.

Usage

The MUL instruction multiplies the values from Rm and Rs, and places the least significant
32 bits of the result in Rd.

The MLA instruction multiplies the values from Rm and Rs, adds the value from Rn, and
places the least significant 32 bits of the result in Rd.

Condition flags

If S is specified, these instructions:

• update the N and Z flags according to the result

• do not affect the V flag

• corrupt the C flag in ARM architecture v4 and earlier

• do not affect the C flag in ARM architecture v5 and later.

Architectures

These instructions are available in ARM architecture v2 and above.
4-40 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

ARM Instruction Reference
Examples

 MUL r10,r2,r5
 MLA r10,r2,r1,r5
 MULS r0,r2,r2
 MULLT r2,r3,r2
 MLAVCS r8,r6,r3,r8

Incorrect examples

 MUL r15,r0,r3 ; use of r15 not allowed
 MLA r1,r1,r6 ; Rd cannot be the same as Rm
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 4-41

ARM Instruction Reference
4.4.2 UMULL, UMLAL, SMULL and SMLAL

Unsigned and signed long multiply and multiply accumulate (32-bit by 32-bit, 64-bit
accumulate or result).

Syntax

Op{cond}{S} RdLo, RdHi, Rm, Rs

where:

Op is one of UMULL, UMLAL, SMULL, or SMLAL.

cond is an optional condition code (see Conditional execution on page 4-4).

S is an optional suffix. If S is specified, the condition code flags are updated
on the result of the operation (see Conditional execution on page 4-4).

RdLo, RdHi are ARM registers for the result. For UMLAL and SMLAL they also hold the
accumulating value.

Rm, Rs are ARM registers holding the operands.

R15 cannot be used for any of RdHi, RdLo, Rm, or Rs.

RdLo, RdHi, and Rm must all be different registers.

Usage

The UMULL instruction interprets the values from Rm and Rs as unsigned integers. It
multiplies these integers and places the least significant 32 bits of the result in RdLo, and
the most significant 32 bits of the result in RdHi.

The UMLAL instruction interprets the values from Rm and Rs as unsigned integers. It
multiplies these integers, and adds the 64-bit result to the 64-bit unsigned integer
contained in RdHi and RdLo.

The SMULL instruction interprets the values from Rm and Rs as two’s complement signed
integers. It multiplies these integers and places the least significant 32 bits of the result
in RdLo, and the most significant 32 bits of the result in RdHi.

The SMLAL instruction interprets the values from Rm and Rs as two’s complement signed
integers. It multiplies these integers, and adds the 64-bit result to the 64-bit signed
integer contained in RdHi and RdLo.
4-42 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

ARM Instruction Reference
Condition flags

If S is specified, these instructions:

• update the N and Z flags according to the result

• corrupt the C and V flags in ARM architecture v4 and earlier

• do not affect the C or V flags in ARM architecture v5 and later.

Architectures

These instructions are available in ARM architecture v3M, and ARM architecture v4
and above except xM variants.

Examples

 UMULL r0,r4,r5,r6
 UMLALS r4,r5,r3,r8
 SMLALLES r8,r9,r7,r6
 SMULLNE r0,r1,r9,r0 ; Rs can be the same as other
 ; registers

Incorrect examples

 UMULL r1,r15,r10,r2 ; use of r15 not allowed
 SMULLLE r0,r1,r0,r5 ; RdLo, RdHi and Rm must all be
 ; different registers
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 4-43

ARM Instruction Reference
4.4.3 SMULxy

Signed multiply (16-bit by 16-bit, 32-bit result).

Syntax

SMUL<x><y>{cond} Rd, Rm, Rs

where:

<x> is either B or T. B means use the bottom end (bits 15:0) of Rm, T means use
the top end (bits 31:16) of Rm.

<y> is either B or T. B means use the bottom end (bits 15:0) of Rs, T means use
the top end (bits 31:16) of Rs.

cond is an optional condition code (see Conditional execution on page 4-4).

Rd is the ARM register for the result.

Rm, Rs are the ARM registers holding the values to be multiplied.

R15 cannot be used for any of Rd, Rm, or Rs.

Any combination of Rd, Rm, and Rs can use the same registers.

Usage

The SMULxy instruction multiplies the 16-bit signed integers from the selected halves of
Rm and Rs, and places the 32-bit result in Rd.

Condition flags

This instruction does not affect any flags.

Architectures

This instruction is available in all E variants of ARM architecture v5 and above.

Example

 SMULTBEQ r8,r7,r9

Incorrect examples

 SMULBT r15,r2,r0 ; use of r15 not allowed
 SMULTTS r0,r6,r2 ; use of S suffix not allowed
4-44 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

ARM Instruction Reference
4.4.4 SMLAxy

Signed multiply-accumulate (16-bit by 16-bit, 32-bit accumulate).

Syntax

SMLA<x><y>{cond} Rd, Rm, Rs, Rn

where:

<x> is either B or T. B means use the bottom end (bits 15:0) of Rm, T means use
the top end (bits 31:16) of Rm.

<y> is either B or T. B means use the bottom end (bits 15:0) of Rs, T means use
the top end (bits 31:16) of Rs.

cond is an optional condition code (see Conditional execution on page 4-4).

Rd is the ARM register for the result.

Rm, Rs are the ARM registers holding the values to be multiplied.

Rn is the ARM register holding the value to be added.

R15 cannot be used for any of Rd, Rm, Rs, or Rn.

Any combination of Rd, Rm, Rs, and Rn can use the same registers.

Usage

The SMLAxy instruction multiplies the 16-bit signed integers from the selected halves of
Rm and Rs, adds the 32-bit result to the 32-bit value in Rn, and places the result in Rd.

Condition flags

This instruction does not affect the N, Z, C, or V flags.

If overflow occurs in the accumulation, it sets the Q flag. To read the state of the Q flag,
use an MRS instruction (see MRS on page 4-72).

NoteNote
This instruction never clears the Q flag. To clear the Q flag, use an MSR instruction (see
MSR on page 4-73).
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 4-45

ARM Instruction Reference
Architectures

This instruction is available in all E variants of ARM architecture v5 and above.

Examples

 SMLATT r8,r1,r0,r8
 SMLABBNE r0,r2,r1,r10
 SMLABT r0,r0,r3,r5

Incorrect examples

 SMLATB r0,r7,r8,r15 ; use of r15 not allowed
 SMLATTS r0,r6,r2 ; use of S suffix not allowed
4-46 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

ARM Instruction Reference
4.4.5 SMULWy

Signed multiply (32-bit by 16-bit, top 32-bit result).

Syntax

SMULW<y>{cond} Rd, Rm, Rs

where:

<y> is either B or T. B means use the bottom end (bits 15:0) of Rs, T means use
the top end (bits 31:16) of Rs.

cond is an optional condition code (see Conditional execution on page 4-4).

Rd is the ARM register for the result.

Rm, Rs are the ARM registers holding the operands.

R15 cannot be used for any of Rd, Rm, or Rs.

Any combination of Rd, Rm, and Rs can use the same registers.

Usage

The SMULWy instruction multiplies the signed integer from the selected half of Rs by the
signed integer from Rm, and places the upper 32-bits of the 48-bit result in Rd.

Condition flags

This instruction does not affect any flags.

Architectures

This instruction is available in all E variants of ARM architecture v5 and above.

Examples

 SMULWB r2,r4,r7
 SMULWTVS r0,r0,r9

Incorrect examples

 SMULWT r15,r9,r3 ; use of r15 not allowed
 SMULWBS r0,r4,r5 ; use of S suffix not allowed
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 4-47

ARM Instruction Reference
4.4.6 SMLAWy

Signed multiply-accumulate (32-bit by 16-bit, top 32-bit accumulate).

Syntax

SMLAW<y>{cond} Rd, Rm, Rs, Rn

where:

<y> is either B or T. B means use the bottom end (bits 15:0) of Rs, T means use
the top end (bits 31:16) of Rs.

cond is an optional condition code (see Conditional execution on page 4-4).

Rd is the ARM register for the result.

Rm, Rs are the ARM registers holding the values to be multiplied.

Rn is the ARM register holding the value to be added.

R15 cannot be used for any of Rd, Rm, Rs, or Rn.

Any combination of Rd, Rm, Rs, and Rn can use the same registers.

Usage

The SMLAWy instruction multiplies the signed integer from the selected half of Rs by the
signed integer from Rm, adds the 32-bit result to the 32-bit value in Rn, and places the
result in Rd.

Condition flags

This instruction does not affect the N, Z, C or V flags.

If overflow occurs in the accumulation, it sets the Q flag. To read the state of the Q flag,
use an MRS instruction (see MRS on page 4-72).

NoteNote

This instruction never clears the Q flag. To clear the Q flag, use an MSR instruction (see
MSR on page 4-73).

Architectures

This instruction is available in all E variants of ARM architecture v5 and above.
4-48 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

ARM Instruction Reference
Examples

 SMLAWB r2,r4,r7,r1
 SMLAWTVS r0,r0,r9,r2

Incorrect examples

 SMLAWT r15,r9,r3,r1 ; use of r15 not allowed
 SMLAWBS r0,r4,r5,r1 ; use of S suffix not allowed
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 4-49

ARM Instruction Reference
4.4.7 SMLALxy

Signed multiply-accumulate (16-bit by 16-bit, 64-bit accumulate).

Syntax

SMLAL<x><y>{cond} RdLo, RdHi, Rm, Rs

where:

<x> is either B or T. B means use the bottom end (bits 15:0) of Rm, T means use
the top end (bits 31:16) of Rm.

<y> is either B or T. B means use the bottom end (bits 15:0) of Rs, T means use
the top end (bits 31:16) of Rs.

cond is an optional condition code (see Conditional execution on page 4-4).

RdHi, RdLo are the ARM registers for the result. They also hold the add-in value.

Rm, Rs are the ARM registers holding the values to be multiplied.

R15 cannot be used for any of RdHi, RdLo, Rm, or Rs.

Any combination of RdHi, RdLo, Rm, or Rs can use the same registers.

Usage

The SMLALxy instruction multiplies the signed integer from the selected half of Rs by the
signed integer from the selected half of Rm, and adds the 32-bit result to the 64-bit value
in RdHi and RdLo.

Condition flags

This instruction does not affect any flags.

NoteNote

This instruction cannot raise an exception. If overflow occurs on this instruction, the
result wraps round without any warning.

Architectures

This instruction is available in all E variants of ARM architecture v5 and above.
4-50 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

ARM Instruction Reference
Examples

 SMLALTB r2,r3,r7,r1
 SMLALBTVS r0,r1,r9,r2

Incorrect examples

 SMLALTT r8,r9,r3,r15 ; use of r15 not allowed
 SMLALBBS r0,r1,r5,r2 ; use of S suffix not allowed
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 4-51

ARM Instruction Reference
4.4.8 MIA, MIAPH, and MIAxy

XScale coprocessor 0 instructions.

Multiply with internal accumulate (32-bit by 32-bit, 40-bit accumulate).

Multiply with internal accumulate, packed halfwords (16-bit by 16-bit twice, 40-bit
accumulate).

Multiply with internal accumulate (16-bit by 16-bit, 40-bit accumulate).

Syntax

MIA{cond} Acc, Rm, Rs

MIAPH{cond} Acc, Rm, Rs

MIA<x><y>{cond} Acc, Rm, Rs

where:

cond is an optional condition code (see Conditional execution on page 4-4).

Acc is the internal accumulator. The standard name is accx, where x is an
integer in the range 0-n. The value of n depends on the processor. It is 0
in current processors.

Rm, Rs are the ARM registers holding the values to be multiplied.

<x> is either B or T. B means use the bottom end (bits 15:0) of Rm, T means use
the top end (bits 31:16) of Rm.

<y> is either B or T. B means use the bottom end (bits 15:0) of Rs, T means use
the top end (bits 31:16) of Rs.

R15 cannot be used for either Rm or Rs.

Usage

The MIA instruction multiplies the signed integers from Rs and Rm, and adds the result to
the 40-bit value in Acc.

The MIAPH instruction multiplies the signed integers from the lower halves of Rs and Rm,
multiplies the signed integers from the upper halves of Rs and Rm, and adds the two
32-bit results to the 40-bit value in Acc.

The MIAxy instruction multiplies the signed integer from the selected half of Rs by the
signed integer from the selected half of Rm, and adds the 32-bit result to the 40-bit value
in Acc.
4-52 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

ARM Instruction Reference
Condition flags

These instructions do not affect any flags.

NoteNote

These instructions cannot raise an exception. If overflow occurs on these instructions,
the result wraps round without any warning.

Architectures

These instructions are only available in XScale.

Examples

 MIA acc0,r5,r0
 MIALE acc0,r1,r9
 MIAPH acc0,r0,r7
 MIAPHNE acc0,r11,r10
 MIABB acc0,r8,r9
 MIABT acc0,r8,r8
 MIATB acc0,r5,r3
 MIATT acc0,r0,r6
 MIABTGT acc0,r2,r5
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 4-53

ARM Instruction Reference
4.5 ARM saturating arithmetic instructions

These operations are saturating (SAT). This means that if overflow occurs:

• the Q flag is set

• if the full result would be less than –231, the result returned is –231

• if the full result would be greater than 231–1, the result returned is 231–1.

The Q flag can also be set by two other instructions (see SMLAxy on page 4-45 and
SMLAWy on page 4-48), but these instructions do not saturate.

4.5.1 QADD, QSUB, QDADD, and QDSUB

Saturating Add, Saturating Subtract, Saturating Double and Add, Saturating Double
and Subtract.

Syntax

op{cond} Rd, Rm, Rn

where:

op is one of QADD, QSUB, QDADD, or QDSUB.

cond is an optional condition code (see Conditional execution on page 4-4).

Rd is the ARM register for the result.

Rm, Rn are the ARM registers holding the operands.

R15 cannot be used for any of Rd, Rm, or Rn.

Usage

The QADD instruction adds the values in Rm and Rn.

The QSUB instruction subtracts the value in Rn from the value in Rm.

The QDADD instruction calculates SAT(Rm + SAT(Rn * 2)). Saturation can occur on the
doubling operation, on the addition, or on both. If saturation occurs on the doubling but
not on the addition, the Q flag is set but the final result is unsaturated.

The QDSUB instruction calculates SAT(Rm - SAT(Rn * 2)). Saturation can occur on the
doubling operation, on the subtraction, or on both. If saturation occurs on the doubling
but not on the subtraction, the Q flag is set but the final result is unsaturated.
4-54 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

ARM Instruction Reference
NoteNote
All values are treated as two’s complement signed integers by these instructions.

Condition flags

These instructions do not affect the N, Z, C, and V flags. If saturation occurs, they set
the Q flag. To read the state of the Q flag, use an MRS instruction (see MRS on page 4-72).

NoteNote

These instructions never clear the Q flag, even if saturation does not occur. To clear the
Q flag, use an MSR instruction (see MSR on page 4-73).

Architectures

These instructions are available in E variants of ARM architecture v5 and above.

Examples

 QADD r0,r1,r9
 QDSUBLT r9,r0,r1

Examples

 QSUBS r3,r4,r2 ; use of S suffix not allowed
 QDADD r11,r15,r0 ; use of r15 not allowed
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 4-55

ARM Instruction Reference
4.6 ARM branch instructions

This section contains the following subsections:

• B and BL on page 4-57

Branch, and Branch with Link

• BX on page 4-58

Branch and exchange instruction set.

• BLX on page 4-59

Branch with Link and exchange instruction set.
4-56 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

ARM Instruction Reference
4.6.1 B and BL

Branch, and Branch with Link.

Syntax

B{cond} label

BL{cond} label

where:

cond is an optional condition code (see Conditional execution on page 4-4).

label is a program-relative expression. See Register-relative and
program-relative expressions on page 3-23 for more information.

Usage

The B instruction causes a branch to label.

The BL instruction copies the address of the next instruction into r14 (lr, the link
register), and causes a branch to label.

Machine-level B and BL instructions have a range of ±32Mb from the address of the
current instruction. However, you can use these instructions even if label is out of
range. Often you do not know where label is placed by the linker. When necessary, the
ARM linker adds code to allow longer branches (see The ARM linker chapter in ADS
Compiler, Linker, and Utilities Guide). The added code is called a veneer.

Architectures

These instructions are available in all versions of the ARM architecture.

Examples

 B loopA
 BLE ng+8
 BL subC
 BLLT rtX
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 4-57

ARM Instruction Reference
4.6.2 BX

Branch, and optionally exchange instruction set.

Syntax

BX{cond} Rm

where:

cond is an optional condition code (see Conditional execution on page 4-4).

Rm is an ARM register containing the address to branch to.

Bit 0 of Rm is not used as part of the address.

If bit 0 of Rm is set, the instruction sets the T flag in the CPSR, and the
code at the destination is interpreted as Thumb code.

If bit 0 of Rm is clear, bit 1 must not be set.

Usage

The BX instruction causes a branch to the address held in Rm, and changes instruction set
to Thumb if bit 0 of Rm is set.

Architectures

This instruction is available in all T variants of the ARM architecture, and ARM
architecture v5 and above.

Examples

 BX r7
 BXVS r0
4-58 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

ARM Instruction Reference
4.6.3 BLX

Branch with Link, and optionally exchange instruction set. This instruction has two
alternative forms:

• an unconditional branch with link to a program-relative address

• a conditional branch with link to an absolute address held in a register.

Syntax

BLX{cond} Rm

BLX label

where:

cond is an optional condition code (see Conditional execution on page 4-4).

Rm is an ARM register containing the address to branch to.

Bit 0 of Rm is not used as part of the address.

If bit 0 of Rm is set, the instruction sets the T flag in the CPSR, and the
code at the destination is interpreted as Thumb code.

If bit 0 of Rm is clear, bit 1 must not be set.

label is a program-relative expression. See Register-relative and
program-relative expressions on page 3-23 for more information.

NoteNote
BLX label cannot be conditional. BLX label always causes a change to
Thumb state.

Usage

The BLX instruction:

• copies the address of the next instruction into r14 (lr, the link register)

• causes a branch to label, or to the address held in Rm

• changes instruction set to Thumb if either:

— bit 0 of Rm is set

— the BLX label form is used.

The machine-level BLX label instruction cannot branch to an address outside ±32Mb of
the current instruction. When necessary, the ARM linker adds code to allow longer
branches (see The ARM linker chapter in ADS Compiler, Linker, and Utilities Guide).
The added code is called a veneer.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 4-59

ARM Instruction Reference
Architectures

This instruction is available in all T variants of ARM architecture v5 and above.

Examples

 BLX r2
 BLXNE r0
 BLX thumbsub

Incorrect example

 BLXMI thumbsub ; BLX label cannot be conditional
4-60 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

ARM Instruction Reference
4.7 ARM coprocessor instructions

This section does not describe Vector Floating-point instructions (see Chapter 6 Vector
Floating-point Programming).

It contains the following sections:

• CDP, CDP2 on page 4-62

Coprocessor data operations

• MCR, MCR2, MCRR on page 4-63

Move to coprocessor from ARM registers, possibly with coprocessor operations

• MRC, MRC2 on page 4-64

Move to ARM register from coprocessor, possibly with coprocessor operations

• MRRC on page 4-65

Move to two ARM registers from coprocessor, possibly with coprocessor
operations

• LDC, STC on page 4-66

Transfer data between memory and coprocessor.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 4-61

ARM Instruction Reference
4.7.1 CDP, CDP2

Coprocessor data operations.

Syntax

CDP{cond} coproc, opcode1, CRd, CRn, CRm{, opcode2}

CDP2 coproc, opcode1, CRd, CRn, CRm{, opcode2}

where:

cond is an optional condition code (see Conditional execution on page 4-4).

coproc is the name of the coprocessor the instruction is for. The standard name
is pn, where n is an integer in the range 0-15.

opcode1 is a coprocessor-specific opcode.

Rd, Rn are ARM source registers. They must not be R15.

CRn, CRm are coprocessor registers.

opcode2 is an optional coprocessor-specific opcode.

Usage

The use of these instructions depends on the coprocessor. See the coprocessor
documentation for details.

NoteNote
CDP2 is always unconditional.

Architectures

CDP is available in ARM architecture versions 2 and above.

CDP2 is available in ARM architecture versions 5 and above.
4-62 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

ARM Instruction Reference
4.7.2 MCR, MCR2, MCRR

Move to coprocessor from ARM registers. Depending on the coprocessor, you might be
able to specify various operations in addition.

Syntax

MCR{cond} coproc, opcode1, Rd, CRn, CRm{, opcode2}

MCR2 coproc, opcode1, Rd, CRn, CRm{, opcode2}

MCRR{cond} coproc, opcode1, Rd, Rn, CRm

where:

cond is an optional condition code (see Conditional execution on page 4-4).

coproc is the name of the coprocessor the instruction is for. The standard name
is pn, where n is an integer in the range 0-15.

opcode1 is a coprocessor-specific opcode.

Rd, Rn are ARM source registers. They must not be R15.

CRn, CRm are coprocessor registers.

opcode2 is an optional coprocessor-specific opcode.

Usage

The use of these instructions depends on the coprocessor. See the coprocessor
documentation for details.

NoteNote
MCR2 is always unconditional.

Architectures

MCR is available in ARM architecture versions 2 and above.

MCR2 is available in ARM architecture versions 5 and above.

MCRR is available in E variants of ARM architecture v5 and above, excluding xP variants.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 4-63

ARM Instruction Reference
4.7.3 MRC, MRC2

Move to ARM register from coprocessor. Depending on the coprocessor, you might be
able to specify various operations in addition.

Syntax

MRC{cond} coproc, opcode1, Rd, CRn, CRm{, opcode2}

MRC2 coproc, opcode1, Rd, CRn, CRm{, opcode2}

where:

cond is an optional condition code (see Conditional execution on page 4-4).

coproc is the name of the coprocessor the instruction is for. The standard name
is pn, where n is an integer in the range 0-15.

opcode1 is a coprocessor-specific opcode.

Rd is the ARM destination register. If Rd is R15, only the flags field is
affected.

CRn, CRm are coprocessor registers.

opcode2 is an optional coprocessor-specific opcode.

Usage

The use of these instructions depends on the coprocessor. See the coprocessor
documentation for details.

NoteNote
MRC2 is always unconditional.

Architectures

MRC is available in ARM architecture versions 2 and above.

MRC2 is available in ARM architecture versions 5 and above.
4-64 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

ARM Instruction Reference
4.7.4 MRRC

Move to two ARM registers from coprocessor. Depending on the coprocessor, you
might be able to specify various operations in addition.

Syntax

MRRC{cond} coproc, opcode, Rd, Rn, CRm

where:

cond is an optional condition code (see Conditional execution on page 4-4).

coproc is the name of the coprocessor the instruction is for. The standard name
is pn, where n is an integer in the range 0-15.

opcode is a coprocessor-specific opcode.

Rd, Rn are ARM destination registers. You cannot use R15 for Rd or Rn.

CRm is the coprocessor source register.

Usage

The use of this instruction depends on the coprocessor. See the coprocessor
documentation for details.

Architectures

MRRC is available in E variants of ARM architecture v5 and above, excluding xP variants.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 4-65

ARM Instruction Reference
4.7.5 LDC, STC

Transfer data between memory and coprocessor.

Syntax

These instructions have three possible forms:

• zero offset

• pre-indexed offset

• post-indexed offset.

The syntax of the three forms, in the same order, are:

op{cond}{L} coproc, CRd, [Rn]

op{cond}{L} coproc, CRd, [Rn, #{-}offset]{!}

op{cond}{L} coproc, CRd, [Rn], #{-}offset

where:

op is either LDC or STC.

cond is an optional condition code (see Conditional execution on page 4-4).

L is an optional suffix specifying a long transfer.

coproc is the name of the coprocessor the instruction is for. The standard name
is pn, where n is an integer in the range 0-15.

CRd is the coprocessor register to load or save.

Rn is the register on which the memory address is based. If R15 is specified,
the value used is the address of the current instruction plus eight.

- is an optional minus sign. If - is present, the offset is subtracted from Rn.
Otherwise, the offset is added to Rn.

offset is an expression evaluating to a multiple of 4, in the range 0-1020.

! is an optional suffix. If ! is present, the address including the offset is
written back into Rn.

Usage

The use of this instruction depends on the coprocessor. See the coprocessor
documentation for details.
4-66 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

ARM Instruction Reference
Architectures

LDC and STC are available in ARM architecture versions 2 and above.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 4-67

ARM Instruction Reference
4.7.6 LDC2, STC2

Transfer data between memory and coprocessor, alternative instructions.

Syntax

These instructions have three possible forms:

• zero offset

• pre-indexed offset

• post-indexed offset.

The syntax of the three forms, in the same order, are:

op coproc, CRd, [Rn]

op coproc, CRd, [Rn, #{-}offset]{!}

op coproc, CRd, [Rn], #{-}offset

where:

op is either LDC2 or STC2.

coproc is the name of the coprocessor the instruction is for. The standard name
is pn, where n is an integer in the range 0-15.

CRd is the coprocessor register to load or save.

Rn is the register on which the memory address is based. If R15 is specified,
the value used is the address of the current instruction plus eight.

- is an optional minus sign. If - is present, the offset is subtracted from Rn.
Otherwise, the offset is added to Rn.

offset is an expression evaluating to a multiple of 4, in the range 0-1020.

! is an optional suffix. If ! is present, the address including the offset is
written back into Rn.

Usage

The use of this instruction depends on the coprocessor. See the coprocessor
documentation for details.

NoteNote
LDC2 and STC2 are always unconditional.
4-68 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

ARM Instruction Reference
Architectures

LDC2 and STC2 are available in ARM architecture versions 5 and above.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 4-69

ARM Instruction Reference
4.8 Miscellaneous ARM instructions

This section contains the following subsections:

• SWI on page 4-71

Software interrupt

• MRS on page 4-72

Move the contents of the CPSR or SPSR to a general-purpose register

• MSR on page 4-73

Load specified fields of the CPSR or SPSR with an immediate constant, or from
the contents of a general-purpose register

• BKPT on page 4-74

Breakpoint

• MAR, MRA on page 4-75

XScale coprocessor 0 instructions.

Transfer between two general-purpose registers and a 40-bit internal accumulator.
4-70 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

ARM Instruction Reference
4.8.1 SWI

Software interrupt.

Syntax

SWI{cond} immed_24

where:

cond is an optional condition code (see Conditional execution on page 4-4).

immed_24 is an expression evaluating to an integer in the range 0-224–1 (a 24-bit
integer).

Usage

The SWI instruction causes a SWI exception. This means that the processor mode
changes to Supervisor, the CPSR is saved to the Supervisor mode SPSR, and execution
branches to the SWI vector (see the Handling Processor Exceptions chapter in ADS
Developer Guide).

Condition flags

This instruction does not affect the flags.

Architectures

This instruction is available in all versions of the ARM architecture.

Example

 SWI 0x123456
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 4-71

ARM Instruction Reference
4.8.2 MRS

Move the contents of the CPSR or SPSR to a general-purpose register.

Syntax

MRS{cond} Rd, psr

where:

cond is an optional condition code (see Conditional execution on page 4-4).

Rd is the destination register. Rd must not be R15.

psr is either CPSR or SPSR.

Usage

Use MRS in combination with MSR as part of a read-modify-write sequence for

updating a PSR, for example to change processor mode, or to clear the Q flag.

Caution
You must not attempt to access the SPSR when the processor is in User or System mode.
This is your responsibility. The assembler cannot warn you about this as it does not
know what processor mode code will be executed in.

Condition flags

This instruction does not affect the flags.

Architectures

This instruction is available in ARM architecture versions 3 and above.

Example

 MSR r3, SPSR
4-72 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

ARM Instruction Reference
4.8.3 MSR

Load specified fields of the CPSR or SPSR with an immediate constant, or from the
contents of a general-purpose register.

Syntax

MSR{cond} <psr>_<fields>, #immed_8r

MSR{cond} <psr>_<fields>, Rm

where:

cond is an optional condition code (see Conditional execution on page 4-4).

<psr> is either CPSR or SPSR.

<fields> specifies the field or fields to be moved. <fields> can be one or more of:

c control field mask byte (PSR[7:0])

x extension field mask byte (PSR[15:8])

s status field mask byte (PSR[23:16)

f flags field mask byte (PSR[31:24]).

immed_8r is an expression evaluating to a numeric constant. The constant must
correspond to an 8-bit pattern rotated by an even number of bits within a
32-bit word.

Rm is the source register.

Usage

See MRS on page 4-72.

Condition flags

This instruction updates the flags explicitly if the f field is specified.

Architectures

This instruction is available in ARM architecture versions 3 and above.

Example

 MSR CPSR_f, r5
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 4-73

ARM Instruction Reference
4.8.4 BKPT

Breakpoint.

Syntax

BKPT immed_16

where:

immed_16 is an expression evaluating to an integer in the range 0-65535 (a 16-bit
integer).

Usage

The BKPT instruction causes the processor to enter Debug mode. Debug tools can use this
to investigate system state when the instruction at a particular address is reached.

Architectures

This instruction is available in ARM architecture versions 5 and above.

Examples

 BKPT 0xF02C
 BKPT 640
4-74 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

ARM Instruction Reference
4.8.5 MAR, MRA

XScale coprocessor 0 instructions.

Transfer between two general-purpose registers and a 40-bit internal accumulator.

Syntax

MAR{cond} Acc, RdLo, RdHi

MRA{cond} RdLo, RdHi, Acc

where:

cond is an optional condition code (see Conditional execution on page 4-4).

Acc is the internal accumulator. The standard name is accx, where x is an
integer in the range 0-n. The value of n depends on the processor. It is 0
for current processors.

RdLo, RdHi are general-purpose registers.

Usage

The MAR instruction copies the contents of RdLo to bits[31:0] of Acc, and the least
significant byte of RdHi to bits[39:32] of Acc.

The MRA instruction:

• copies bits[31:0] of Acc to RdLo

• copies bits[39:32] of Acc to RdHi

• sign extends the value by copying bit[39] of Acc to bits[31:8] of RdHi.

Architectures

These instructions are only available in XScale.

Examples

 MAR acc0,r0,r1
 MRA r4,r5,acc0
 MARNE acc0,r9,r2
 MRAGT r4,r8,acc0
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 4-75

ARM Instruction Reference
4.9 ARM pseudo-instructions

The ARM assembler supports a number of pseudo-instructions that are translated into
the appropriate combination of ARM or Thumb instructions at assembly time.

The pseudo-instructions available in ARM state are described in the following sections:

• ADR ARM pseudo-instruction on page 4-77

Load a program-relative or register-relative address (short range)

• ADRL ARM pseudo-instruction on page 4-78

Load a program-relative or register-relative address into a register (medium
range)

• LDR ARM pseudo-instruction on page 4-80

Load a register with a 32-bit constant value or an address (unlimited range)

• NOP ARM pseudo-instruction on page 4-82

NOP generates the preferred ARM no-operation code.
4-76 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

ARM Instruction Reference
4.9.1 ADR ARM pseudo-instruction

Load a program-relative or register-relative address into a register.

Syntax

ADR{cond} register,expr

where:

cond is an optional condition code.

register is the register to load.

expr is a program-relative or register-relative expression that evaluates to:

• a non word-aligned address within ±255 bytes

• a word-aligned address within ±1020 bytes.

More distant addresses can be used if the alignment is 16 bytes or more.

The address can be either before or after the address of the instruction or
the base register (see Register-relative and program-relative expressions
on page 3-23).

NoteNote

For program-relative expressions, the given range is relative to a point
two words after the address of the current instruction.

Usage

ADR always assembles to one instruction. The assembler attempts to produce a single ADD

or SUB instruction to load the address. If the address cannot be constructed in a single
instruction, an error is generated and the assembly fails.

ADR produces position-independent code, because the address is program-relative or
register-relative.

Use the ADRL pseudo-instruction to assemble a wider range of effective addresses.

If expr is program-relative, it must evaluate to an address in the same code section as
the ADR pseudo-instruction.

Example

start MOV r0,#10
 ADR r4,start ; => SUB r4,pc,#0xc
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 4-77

ARM Instruction Reference
4.9.2 ADRL ARM pseudo-instruction

Load a program-relative or register-relative address into a register. It is similar to the
ADR pseudo-instruction. ADRL can load a wider range of addresses than ADR because it
generates two data processing instructions.

NoteNote

ADRL is not available when assembling Thumb instructions. Use it only in ARM code.

Syntax

ADRL{cond} register,expr

where:

cond is an optional condition code.

register is the register to load.

expr is a program-relative or register-relative expression that evaluates to:

• a non word-aligned address within 64KB

• a word-aligned address within 256KB.

More distant addresses can be used if the alignment is 16 bytes or more.

The address can be either before or after the address of the instruction or
the base register (see Register-relative and program-relative expressions
on page 3-23).

NoteNote

For program-relative expressions, the given range is relative to a point
two words after the address of the current instruction.

Usage

ADRL always assembles to two instructions. Even if the address can be reached in a single
instruction, a second, redundant instruction is produced.

If the assembler cannot construct the address in two instructions, it generates an error
message and the assembly fails. See LDR ARM pseudo-instruction on page 4-80 for
information on loading a wider range of addresses (see also Loading constants into
registers on page 2-24).

ADRL produces position-independent code, because the address is program-relative or
register-relative.
4-78 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

ARM Instruction Reference
If expr is program-relative, it must evaluate to an address in the same code section as
the ADRL pseudo-instruction. Otherwise, it might be out of range after linking.

Example

start MOV r0,#10
 ADRL r4,start + 60000 ; => ADD r4,pc,#0xe800
 ; ADD r4,r4,#0x254
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 4-79

ARM Instruction Reference
4.9.3 LDR ARM pseudo-instruction

Load a register with either:

• a 32-bit constant value

• an address.

NoteNote

This section describes the LDR pseudo-instruction only. See ARM memory access
instructions on page 4-6 for information on the LDR instruction.

Syntax

LDR{cond} register,=[expr | label-expr]

where:

cond is an optional condition code.

register is the register to be loaded.

expr evaluates to a numeric constant:

• the assembler generates a MOV or MVN instruction, if the value of expr
is within range

• if the value of expr is not within range of a MOV or MVN instruction,
the assembler places the constant in a literal pool and generates a
program-relative LDR instruction that reads the constant from the
literal pool.

label-expr is a program-relative or external expression. The assembler places the
value of label-expr in a literal pool and generates a program-relative LDR

instruction that loads the value from the literal pool.

If label-expr is an external expression, or is not contained in the current
section, the assembler places a linker relocation directive in the object
file. The linker generates the address at link time.
4-80 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

ARM Instruction Reference
Usage

The LDR pseudo-instruction is used for two main purposes:

• To generate literal constants when an immediate value cannot be moved into a
register because it is out of range of the MOV and MVN instructions

• To load a program-relative or external address into a register. The address remains
valid regardless of where the linker places the ELF section containing the LDR.

NoteNote

An address loaded in this way is fixed at link time, so the code is not
position-independent.

The offset from the PC to the value in the literal pool must be less than 4KB. You are
responsible for ensuring that there is a literal pool within range. See LTORG on
page 7-13 for more information.

See Loading constants into registers on page 2-24 for a more detailed explanation of
how to use LDR, and for more information on MOV and MVN.

Example

 LDR r3,=0xff0 ; loads 0xff0 into r3
 ; => MOV r3,#0xff0
 LDR r1,=0xfff ; loads 0xfff into r1
 ; => LDR r1,[pc,offset_to_litpool]
 ; ...
 ; litpool DCD 0xfff
 LDR r2,=place ; loads the address of
 ; place into r2
 ; => LDR r2,[pc,offset_to_litpool]
 ; ...
 ; litpool DCD place
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 4-81

ARM Instruction Reference
4.9.4 NOP ARM pseudo-instruction

NOP generates the preferred ARM no-operation code.

The following instruction might be used, but this is not guaranteed:

 MOV r0, r0

Syntax

NOP

Usage

NOP cannot be used conditionally. Not executing a no-operation is the same as executing
it, so conditional execution is not required.

ALU status flags are unaltered by NOP.
4-82 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Chapter 5-
Thumb Instruction Reference

This chapter describes the Thumb instructions that are provided by the ARM assembler
and the inline assemblers in the ARM C and C++ compilers. It contains the following
sections:

• Thumb memory access instructions on page 5-4

• Thumb arithmetic instructions on page 5-15

• Thumb general data processing instructions on page 5-22

• Thumb branch instructions on page 5-31

• Thumb software interrupt and breakpoint instructions on page 5-37

• Thumb pseudo-instructions on page 5-39.

See Table 5-1 on page 5-2 to locate individual directives or pseudo-instructions.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 5-1

Thumb Instruction Reference
Table 5-1 Location of Thumb instructions and pseudo-instructions

Instruction mnemonic Brief description Page Architecturea

ADC Add with carry page 5-21 4T

ADD Add page 5-15 4T

ADR Load address (pseudo-instruction) page 5-40 -

AND Logical AND page 5-23 4T

ASR Arithmetic shift right page 5-24 4T

B Branch page 5-32 4T

BIC Bit clear page 5-23 4T

BKPT Breakpoint page 5-38 5T

BL Branch with link page 5-34 4T

BLX Branch with link and exchange instruction sets page 5-36 5T

BX Branch and exchange instruction sets page 5-35 4T

CMN, CMP Compare negative, Compare page 5-26 4T

EOR Logical exclusive OR page 5-23 4T

LDMIA Load multiple registers, increment after page 5-13 4T

LDR Load register, immediate offset page 5-5 4T

LDR Load register, register offset page 5-7 4T

LDR Load register, pc or sp relative page 5-9 4T

LDR Load register (pseudo-instruction) page 5-41 -

LSL, LSR Logical shift left, Logical shift right page 5-24 4T

MOV Move page 5-28 4T

MUL Multiply page 5-21 4T

MVN, NEG Move NOT, Negate page 5-28 4T

NOP No operation (pseudo-instruction) page 5-43 -

ORR Logical OR page 5-23 4T

POP, PUSH Pop registers from stack, Push registers onto stack page 5-11 4T
5-2 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Thumb Instruction Reference
ROR Rotate right page 5-24 4T

SBC Subtract with carry page 5-21 4T

STMIA Store multiple registers, increment after page 5-13 4T

STR Store register, immediate offset page 5-5 4T

STR Store register, register offset page 5-7 4T

STR Store register, pc or sp relative page 5-9 4T

SUB Subtract page 5-15 4T

SWI Software interrupt page 5-37 4T

TST Test bits page 5-30 4T

a. nT : available in T variants of ARM architecture version n and above

Table 5-1 Location of Thumb instructions and pseudo-instructions (continued)

Instruction mnemonic Brief description Page Architecturea
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 5-3

Thumb Instruction Reference
5.1 Thumb memory access instructions

This section contains the following subsections:

• LDR and STR, immediate offset on page 5-5

Load Register and Store Register. Address in memory specified as an immediate
offset from a value in a register.

• LDR and STR, register offset on page 5-7

Load Register and Store Register. Address in memory specified as a
register-based offset from a value in a register.

• LDR and STR, pc or sp relative on page 5-9

Load Register and Store Register. Address in memory specified as an immediate
offset from a value in the pc or the sp.

• PUSH and POP on page 5-11

Push low registers, and optionally the LR, onto the stack.

Pop low registers, and optionally the pc, off the stack.

• LDMIA and STMIA on page 5-13

Load and store multiple registers.
5-4 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Thumb Instruction Reference
5.1.1 LDR and STR, immediate offset

Load Register and Store Register. Address in memory specified as an immediate offset
from a value in a register.

Syntax

op Rd, [Rn, #immed_5x4]

opH Rd, [Rn, #immed_5x2]

opB Rd, [Rn, #immed_5x1]

where:

op is either:

LDR Load register

STR Store register.

H is a parameter specifying an unsigned halfword transfer.

B is a parameter specifying an unsigned byte transfer.

Rd is the register to be loaded or stored. Rd must be in the range r0-r7.

Rn is the register containing the base address. Rn must be in the range r0-r7.

immed_5xN is the offset. It is an expression evaluating (at assembly time) to a
multiple of N in the range 0-31N.

Usage

STR instructions store a word, halfword, or byte to memory.

LDR instructions load a word, halfword, or byte from memory.

The address is found by adding the offset to the base address from Rn.

Immediate offset halfword and byte loads are unsigned. The data is loaded into the least
significant word or byte of Rd, and the rest of Rd is filled with zeroes.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 5-5

Thumb Instruction Reference
Address alignment for word and halfword transfers

The address must be divisible by 4 for word transfers, and by 2 for halfword transfers.

If your system has a system coprocessor (cp15), you can enable alignment checking.
Non-aligned transfers cause an alignment exception if alignment checking is enabled.

If your system does not have a system coprocessor (cp15), or alignment checking is
disabled:

• A non-aligned load corrupts Rd.

• A non-aligned save corrupts two or four bytes in memory. The corrupted location
in memory is [address AND NOT 0x1] for halfword saves, and [address AND
NOT 0x3] for word saves.

Architectures

These instructions are available in all T variants of the ARM architecture.

Examples

 LDR r3,[r5,#0]
 STRB r0,[r3,#31]
 STRH r7,[r3,#16]
 LDRB r2,[r4,#label-{PC}]

Incorrect examples

 LDR r13,[r5,#40] ; high registers not allowed

 STRB r0,[r3,#32] ; 32 is out of range for byte transfers

 STRH r7,[r3,#15] ; offsets for halfword transfers must be even

 LDRH r6,[r0,#-6] ; negative offsets not supported
5-6 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Thumb Instruction Reference
5.1.2 LDR and STR, register offset

Load Register and Store Register. Address in memory specified as a register-based
offset from a value in a register.

Syntax

op Rd, [Rn, Rm]

where:

op is one of the following:

LDR Load register, 4-byte word

STR Store register, 4-byte word

LDRH Load register, 2-byte unsigned halfword

LDRSH Load register, 2-byte signed halfword

STRH Store register, 2-byte halfword

LDRB Load register, unsigned byte

LDRSB Load register, signed byte

STRB Store register, byte.

NoteNote

There is no distinction between signed and unsigned store instructions.

Rd is the register to be loaded or stored. Rd must be in the range r0-r7.

Rn is the register containing the base address. Rn must be in the range r0-r7.

Rm is the register containing the offset. Rm must be in the range r0-r7.

Usage

STR instructions store a word, halfword, or byte from Rd to memory.

LDR instructions load a word, halfword, or byte from memory to Rd.

The address is found by adding the offset to the base address from Rn.

Register offset halfword and byte loads can be signed or unsigned. The data is loaded
into the least significant word or byte of Rd, and the rest of Rd is filled with zeroes for an
unsigned load, or with copies of the sign bit for a signed load.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 5-7

Thumb Instruction Reference
Address alignment for word and halfword transfers

The address must be divisible by 4 for word transfers, and by 2 for halfword transfers.

If your system has a system coprocessor (cp15), you can enable alignment checking.
Non-aligned transfers cause an alignment exception if alignment checking is enabled.

If your system does not have a system coprocessor (cp15), or alignment checking is
disabled:

• A non-aligned load corrupts Rd.

• A non-aligned save corrupts memory. The corrupted location in memory is the
halfword at [address AND NOT 0x1] for halfword saves, and the word at [address
AND NOT b11] for word saves.

Architectures

These instructions are available in all T variants of the ARM architecture.

Examples

 LDR r2,[r1,r5]
 LDRSH r0,[r0,r6]
 STRB r1,[r7,r0]

Incorrect examples

 LDR r13,[r5,r3] ; high registers not allowed
 STRSH r7,[r3,r1] ; no signed store instruction
5-8 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Thumb Instruction Reference
5.1.3 LDR and STR, pc or sp relative

Load Register and Store Register. Address in memory specified as an immediate offset
from a value in the pc or the sp.

NoteNote

There is no pc-relative STR instruction.

Syntax

LDR Rd, [pc, #immed_8x4]

LDR Rd, label

LDR Rd, [sp, #immed_8x4]

STR Rd, [sp, #immed_8x4]

where:

Rd is the register to be loaded or stored. Rd must be in the range r0 to r7.

immed_8x4 is the offset. It is an expression evaluating (at assembly time) to a
multiple of 4 in the range 0 to 1020.

label is a program-relative expression. See Register-relative and
program-relative expressions on page 3-23 for more information.

label must be after the current instruction, and within 1KB of it.

Usage

STR instructions store a word to memory.

LDR instructions load a word from memory.

The address is found by adding the offset to the base address from pc or sp. Bit[1] of the
pc is ignored. This ensures that the address is word-aligned.

Address alignment for word and halfword transfers

The address must be a multiple of 4.

If your system has a system coprocessor (cp15), you can enable alignment checking.
Non-aligned transfers cause an alignment exception if alignment checking is enabled.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 5-9

Thumb Instruction Reference
If your system does not have a system coprocessor (cp15), or alignment checking is
disabled:

• A non-aligned load corrupts Rd.

• A non-aligned save corrupts four bytes in memory. The corrupted location in
memory is [address AND NOT b11].

Architectures

These instructions are available in all T variants of the ARM architecture.

Examples

 LDR r2,[pc,#1016]
 LDR r5,localdata
 LDR r0,[sp,#920]
 STR r1,[sp,#20]

Incorrect examples

 LDR r13,[pc,#8] ; Rd must be in range r0-r7

 STR r7,[pc,#64] ; there is no pc-relative STR instruction

 STRH r0,[sp,#16] ; there are no pc- or sp-relative
 ; halfword or byte transfers

 LDR r2,[pc,#81] ; immediate must be a multiple of four

 LDR r1,[pc,#-24] ; immediate must not be negative

 STR r1,[sp,#1024] ; maximum immediate value is 1020
5-10 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Thumb Instruction Reference
5.1.4 PUSH and POP

Push low registers, and optionally the LR, onto the stack.

Pop low registers, and optionally the pc, off the stack.

Syntax

PUSH {reglist}

POP {reglist}

PUSH {reglist, LR}

POP {reglist, pc}

where:

reglist is a comma-separated list of low registers or low-register ranges.

NoteNote
The braces in the syntax description are part of the instruction format.
They do not indicate that the register list is optional.

There must be at least one register in the list.

Usage

Thumb stacks are full, descending stacks. The stack grows downwards, and the sp
points to the last entry on the stack.

Registers are stored on the stack in numerical order, with the lowest numbered register
at the lowest address.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 5-11

Thumb Instruction Reference
POP {reglist, pc}

This instruction causes a branch to the address popped off the stack into the pc. This is
usually a return from a subroutine, where the lr was pushed onto the stack at the start of
the subroutine.

In ARM architecture version 5T and above:

• if bits[1:0] of the value loaded to the pc are b00, the processor changes to ARM
state

• bits[1:0] must not have the value b10.

In ARM architecture version 4T and earlier, bits[1:0] of the value loaded to the pc are
ignored, so POP cannot be used to change state.

Condition flags

These instructions do not affect the flags.

Architectures

These instructions are available in all T variants of the ARM architecture.

Examples

 PUSH {r0,r3,r5}
 PUSH {r1,r4-r7} ; pushes r1, r4, r5, r6, and r7
 PUSH {r0,LR}
 POP {r2,r5}
 POP {r0-r7,pc} ; pop and return from subroutine

Incorrect examples

 PUSH {r3,r5-r8} ; high registers not allowed
 PUSH {} ; must be at least one register in list
 PUSH {r1-r4,pc} ; cannot push the pc
 POP {r1-r4,LR} ; cannot pop the LR
5-12 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Thumb Instruction Reference
5.1.5 LDMIA and STMIA

Load and store multiple registers.

Syntax

op Rn!, {reglist}

where:

op is either:

LDMIA Load multiple, increment after

STMIA Store multiple, increment after.

Rn is the register containing the base address. Rn must be in the range r0-r7.

reglist is a comma-separated list of low registers or low-register ranges.

NoteNote
The braces in the syntax description are part of the instruction format.
They do not indicate that the register list is optional.

There must be at least one register in the list.

Usage

Registers are loaded stored and in numerical order, with the lowest numbered register
at the address initially in Rn.

The value in Rn is incremented by 4 times the number of registers in reglist.

If Rn is in reglist:

• for an LDMIA instruction, the final value of Rn is the value loaded, not the
incremented address

• for an STMIA instruction, the value stored for Rn is:

— the initial value of Rn if Rn is the lowest-numbered register in reglist

— unpredictable otherwise.

Architectures

These instructions are available in all T variants of the ARM architecture.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 5-13

Thumb Instruction Reference
Examples

 LDMIA r3!, {r0,r4}
 LDMIA r5!, {r0-r7}
 STMIA r0!, {r6,r7}
 STMIA r3!, {r3,r5,r7}

Incorrect examples

 LDMIA r3!,{r0,r9} ; high registers not allowed

 STMIA r5!, {} ; must be at least one register
 ; in list

 STMIA r5!,{r1-r6} ; value stored from r5 is unpredictable
5-14 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Thumb Instruction Reference
5.2 Thumb arithmetic instructions

This section contains the following subsections:

• ADD and SUB, low registers on page 5-16

Branch, and Branch with Link

• ADD, high or low registers on page 5-18

Add values in registers, one or both of them in the range r8 to r15.

• ADD and SUB, sp on page 5-19

Increment or decrement sp by an immediate constant

• ADD, pc or sp relative on page 5-20

Add an immediate constant to the value from sp or pc, and place the result into a
low register

• ADC, SBC, and MUL on page 5-21

Add with carry, Subtract with carry, and Multiply.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 5-15

Thumb Instruction Reference
5.2.1 ADD and SUB, low registers

Add and subtract. There are three forms of these instructions that operate on low
registers. You can:

• add or subtract the contents of two registers, and place the result in a third register

• add a small integer to, or subtract it from, the value in a register, and place the
result in a different register

• add a larger integer to, or subtract it from, the value in a register, and return the
result to the same register.

Syntax

op Rd, Rn, Rm

op Rd, Rn, #expr3

op Rd, #expr8

where:

op is either ADD or SUB.

Rd is the destination register. It is also used for the first operand in op

Rd,#expr8 instructions.

Rn is a register containing the first operand.

Rm is a register containing the second operand.

expr3 is an expression evaluating (at assembly time) to an integer in the range
–7 to +7.

expr8 is an expression evaluating (at assembly time) to an integer in the range
–255 to +255.

Usage

op Rd,Rn,Rm performs an Rn + Rm or an Rn – Rm operation, and places the result in Rd.

op Rd,Rn,#expr3 performs an Rn + expr3 or an Rn – expr3 operation, and places the result
in Rd.

op Rd,#expr8 performs an Rd + expr8 or an Rd – expr8 operation, and places the result in
Rd.
5-16 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Thumb Instruction Reference
NoteNote
An ADD instruction with a negative value for expr3 or expr8 assembles to the
corresponding SUB instruction with a positive constant. A SUB instruction with a negative
value for expr3 or expr8 assembles to the corresponding ADD instruction with a positive
constant.

Be aware of this when looking at disassembly listings.

Restrictions

Rd, Rn, and Rm must all be low registers (that is, in the range r0 to r7).

Condition flags

These instructions update the N, Z, C, and V flags.

Architectures

These instructions are available in all T variants of the ARM architecture.

Examples

 ADD r3,r1,r5
 SUB r0,r4,#5
 ADD r7,#201
 ADD r1,vc+4 ; vc + 4 must evaluate at assembly time to
 ; an integer in the range -255 to +255

Incorrect examples

 ADD r9,r2,r6 ; high registers not allowed
 SUB r4,r5,#201 ; immediate value out of range
 SUB r3,#-99 ; negative immediate values not allowed
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 5-17

Thumb Instruction Reference
5.2.2 ADD, high or low registers

Add values in registers, returning the result to the first operand register.

Syntax

ADD Rd, Rm

where:

Rd is the destination register. It is also used for the first operand.

Rm is a register containing the second operand.

Usage

This instruction adds the values in Rd and Rm, and places the result in Rd.

NoteNote

An ADD Rd,Rm instruction where both Rd and Rm are low registers assembles to an ADD

Rd,Rd,Rm instruction (see ADD and SUB, low registers on page 5-16).

Be aware of this when looking at disassembly listings.

Condition flags

The N, Z, C, and V condition flags are:

• updated if both Rd and Rm are low registers

• unaffected otherwise.

Architectures

This instruction is available in all T variants of the ARM architecture.

Examples

 ADD r12,r4
 ADD r10,r11
 ADD r0,r8
 ADD r2,r4 ; equivalent to ADD r2,r2,r4. Does affect flags.
5-18 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Thumb Instruction Reference
5.2.3 ADD and SUB, sp

Increment or decrement sp by an immediate constant.

Syntax

ADD sp, #expr

SUB sp, #expr

where:

expr is an expression that evaluates (at assembly time) to a multiple of 4 in the
range –508 to +508.

Usage

This instruction adds the value of expr to the value from Rp, and places the result in Rd.

NoteNote

An ADD instruction with a negative value for expr assembles to the corresponding SUB

instruction with a positive constant. A SUB instruction with a negative value for expr
assembles to the corresponding ADD instruction with a positive constant.

Be aware of this when looking at disassembly listings.

Condition flags

This instruction does not affect the flags.

Architectures

This instruction is available in all T variants of the ARM architecture.

Examples

 ADD sp,#312
 SUB sp,#96
 SUB sp,#abc+8 ; abc + 8 must evaluate at assembly time to
 ; a multiple of 4 in the range –508 to +508
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 5-19

Thumb Instruction Reference
5.2.4 ADD, pc or sp relative

Add an immediate constant to the value from sp or pc, and place the result into a low
register.

Syntax

ADD Rd, Rp, #expr

where:

Rd is the destination register. Rd must be in the range r0-r7.

Rp is either sp or pc.

expr is an expression that evaluates (at assembly time) to a multiple of 4 in the
range 0-1020.

Usage

This instruction adds the value of expr to the value from Rp, and places the result in Rd.

NoteNote
If Rp is the pc, the value used is:

(the address of the current instruction + 4) AND &FFFFFFFC.

Condition flags

This instruction does not affect the flags.

Architectures

This instruction is available in all T variants of the ARM architecture.

Examples

 ADD r6,sp,#64
 ADD r2,pc,#980
 ADD r0,pc,#lit-{PC} ; lit - {PC} must evaluate, at assembly
 ; time, to a multiple of 4 in the range
 ; 0 to 1020
5-20 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Thumb Instruction Reference
5.2.5 ADC, SBC, and MUL

Add with carry, Subtract with carry, and Multiply.

Syntax

op Rd, Rm

where:

op is one of ADC, SBC, or MUL.

Rd is the destination register. It also contains the first operand.

Rm is a register containing the second operand.

Usage

ADC adds the values in Rd and Rm, together with the carry flag, and places the result in Rd.
Use this to synthesize multiword addition.

SBC subtracts the value in Rm from the value in Rd, taking account of the carry flag, and
places the result in Rd. Use this to synthesize multiword subtraction.

MUL multiplies the values in Rd and Rm, and places the result in Rd.

Restrictions

Rd, and Rm, must be low registers (that is, in the range r0 to r7).

Condition flags

ADC and SBC update the N, Z, C, and V flags.

MUL updates the N and Z flags.

In ARM architecture version 4 and earlier, MUL corrupts the C and V flags. In ARM
architecture version 5 and later, MUL has no effect on the C and V flags.

Architectures

These instructions are available in all T variants of the ARM architecture.

Example

 ADC r2,r4
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 5-21

Thumb Instruction Reference
5.3 Thumb general data processing instructions

This section contains the following subsections:

• AND, ORR, EOR, and BIC on page 5-23

Bitwise logical operations.

• ASR, LSL, LSR, and ROR on page 5-24

Shift and rotate operations.

• CMP and CMN on page 5-26

Compare and Compare Negative.

• MOV, MVN, and NEG on page 5-28

Move, Move NOT, and Negate.

• TST on page 5-30

Test bits.
5-22 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Thumb Instruction Reference
5.3.1 AND, ORR, EOR, and BIC

Bitwise logical operations.

Syntax

op Rd, Rm

where:

op is one of AND, ORR, EOR, or BIC.

Rd is the destination register. It also contains the first operand. Rd must be in
the range r0-r7.

Rm is the register containing the second operand. Rm must be in the range
r0-r7.

Usage

These instructions perform a bitwise logical operation on the contents of Rd and Rm, and
place the result in Rd. The operations are as follows:

• the AND instruction performs a logical AND operation

• the ORR instruction performs a logical OR operation

• the EOR instruction performs a logical Exclusive OR operation

• the BIC instruction performs an Rd AND NOT Rm operation.

Condition flags

These instructions update the N and Z flags according to the result. The C and V flags
are not affected.

Architectures

These instructions are available in all T variants of the ARM architecture.

Example

 AND r2,r4
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 5-23

Thumb Instruction Reference
5.3.2 ASR, LSL, LSR, and ROR

Shift and rotate operations. These instructions can use a value contained in a register, or
an immediate shift value.

Syntax

op Rd, Rs

op Rd, Rm, #expr

where:

op is one of:

ASR Arithmetic Shift Right. Register contents are treated as two’s
complement signed integers. The sign bit is copied into
vacated bits.

LSL Logical Shift Left. Vacated bits are cleared.

LSR Logical Shift Right. Vacated bits are cleared.

ROR Rotate Right. Bits moved out of the right-hand end of the
register are rotated back into the left-hand end.

NoteNote
ROR can only be used with a register-controlled shift.

Rd is the destination register. It is also the source register for
register-controlled shifts. Rd must be in the range r0-r7.

Rs is the register containing the shift value for register-controlled shifts. Rm
must be in the range r0-r7.

Rm is the source register for immediate shifts. Rm must be in the range r0-r7.

expr is the immediate shift value. It is an expression evaluating (at assembly
time) to an integer in the range:

• 0-31 if op is LSL

• 1-32 otherwise.
5-24 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Thumb Instruction Reference
Register-controlled shift

These instructions take the value from Rd, apply the shift to it, and place the result back
into Rd.

Only the least significant byte of Rs is used for the shift value.

For all these instructions except ROR:

• if the shift is 32, Rd is cleared, and the last bit shifted out remains in the C flag

• if the shift is greater than 32, Rd and the C flag are cleared.

Immediate shift

These instructions take the value from Rm, apply the shift to it, and place the result into
Rd.

Condition flags

These instructions update the N and Z flags according to the result. The V flag is not
affected.

The C flag:

• is unaffected if the shift value is zero

• otherwise, contains the last bit shifted out of the source register.

Architectures

These instructions are available in all T variants of the ARM architecture.

Examples

 ASR r3,r5
 LSR r0,r2,#6
 LSR r5,r5,av ; av must evaluate, at assembly time, to an
 ; integer in the range 1-32.

 LSL r0,r4,#0 ; same as MOV r0,r4 except that C and V
 ; flags are not affected

Incorrect examples

 ROR r2,r7,#3 ; ROR cannot use immediate shift value
 LSL r9,r1 ; high registers not allowed
 LSL r0,r7,#32 ; immediate shift out of range
 ASR r0,r7,#0 ; immediate shift out of range
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 5-25

Thumb Instruction Reference
5.3.3 CMP and CMN

Compare and Compare Negative.

Syntax

CMP Rn, #expr

CMP Rn, Rm

CMN Rn, Rm

where:

Rn is the register containing the first operand.

expr is an expression that evaluates (at assembly time) to an integer in the
range 0-255.

Rm is a register containing the second operand.

Usage

These instructions update the condition flags, but do not place a result in a register.

The CMP instruction subtracts the value of expr, or the value in Rm, from the value in Rn.

The CMN instruction adds the values in Rm and Rn.

Restrictions

In CMP Rn,#expr, and CMN instructions, Rn and Rm must be in the range r0 to r7.

In CMP Rn,Rm instructions, Rn and Rm can be any register r0 to r15.

Condition flags

These instructions update the N, Z, C, and V flags according to the result.

Architectures

These instructions are available in all T variants of the architecture.
5-26 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Thumb Instruction Reference
Examples

 CMP r2,#255
 CMP r7,r12 ; high register IS allowed with CMP Rn,Rm
 CMN r1,r5

Incorrect examples

 CMP r2,#508 ; immediate value out of range
 CMP r9,#24 ; high register not allowed with #expr
 CMN r0,r10 ; high register not allowed with CMN
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 5-27

Thumb Instruction Reference
5.3.4 MOV, MVN, and NEG

Move, Move NOT, and Negate.

Syntax

MOV Rd, #expr

MOV Rd, Rm

MVN Rd, Rm

NEG Rd, Rm

where:

Rd is the destination register.

expr is an expression that evaluates (at assembly time) to an integer in the
range 0-255.

Rm is the source register.

Usage

The MOV instruction places #expr, or the value from Rm, in Rd.

The MVN instruction takes the value in Rm, performs a bitwise logical NOT operation on
the value, and places the result in Rd.

The NEG instruction takes the value in Rm, multiplies it by –1, and places the result in Rd.

Restrictions

In MOV Rd,#expr, MVN, and NEG instructions, Rd and Rm must be in the range r0 to r7.

In MOV Rd, Rm instructions, Rd and Rm can be any register r0 to r15, but see Condition
flags below.
5-28 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Thumb Instruction Reference
Condition flags

MOV Rd,#expr and MVN instructions update the N and Z flags. They have no effect on the
C or V flags.

NEG instructions update the N, Z, C, and V flags.

MOV Rd, Rm behaves as follows:

• if either Rd or Rm is a high register (r8-r15), the flags are unaffected

• if both Rd and Rm are low registers (r0-r7), the N and Z flags are updated, and C
and V flags are cleared.

NoteNote
You can use LSL, with a shift of zero, to move between low registers without
clearing the C and V flags (see ASR, LSL, LSR, and ROR on page 5-24).

Architectures

These instructions are available in all T variants of the ARM architecture.

Examples

 MOV r3,#0
 MOV r0,r12 ; does not update flags
 MVN r7,r1
 NEG r2,r2

Incorrect examples

 MOV r2,#256 ; immediate value out of range
 MOV r8,#3 ; cannot move immediate to high register
 MVN r8,r2 ; high registers not allowed with MVN or NEG
 NEG r0,#3 ; immediate value not allowed with MVN or NEG
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 5-29

Thumb Instruction Reference
5.3.5 TST

Test bits.

Syntax

TST Rn, Rm

where:

Rn is the register containing the first operand.

Rm is the register containing the second operand.

Usage

This instruction performs a bitwise logical AND operation on the values in Rm and Rn. It
updates the condition flags, but does not place a result in a register.

Restrictions

Rn and Rm must be in the range r0-r7.

Condition flags

This instruction updates the N and Z flags according to the result. The C and V flags are
unaffected.

Architectures

This instruction is available in all T variants of the ARM architecture.

Example

 TST r2,r4
5-30 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Thumb Instruction Reference
5.4 Thumb branch instructions

This section contains the following subsections:

• B on page 5-32

Branch.

• BL on page 5-34

Branch with Link.

• BX on page 5-35

Branch and exchange instruction set.

• BLX on page 5-36

Branch with Link and exchange instruction set.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 5-31

Thumb Instruction Reference
5.4.1 B

Branch. This is the only instruction in the Thumb instruction set that can be conditional.

Syntax

B{cond} label

where:

cond is an optional condition code (see Table 5-2 on page 5-33).

label is a program-relative expression. This is usually a label within the same
piece of code. See Register-relative and program-relative expressions on
page 3-23 for more information.

label must be within:

• –252 to +258 bytes of the current instruction, if cond is used

• ±2KB if the instruction is unconditional.

Usage

The B instruction causes a branch to label, if cond is satisfied, or if cond is not used.

NoteNote

label must be within the specified limits. The ARM linker cannot add code to generate
longer branches.

Architectures

This instruction is available in all T variants of the ARM architecture.

Examples

 B dloop
 BEQ sectB
5-32 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Thumb Instruction Reference
Table 5-2 Condition codes for Thumb B instruction

Suffix Flags Meaning

EQ Z set Equal

NE Z clear Not equal

CS/HS C set Higher or same (unsigned >=)

CC/LO C clear Lower (unsigned <)

MI N set Negative

PL N clear Positive or zero

VS V set Overflow

VC V clear No overflow

HI C set and Z clear Higher (unsigned <=)

LS C clear or Z set Lower or same (unsigned <=)

GE N and V the same Signed >=

LT N and V different Signed <

GT Z clear, and N and V the same Signed >

LE Z set, or N and V different Signed <=
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 5-33

Thumb Instruction Reference
5.4.2 BL

Long branch with Link.

Syntax

BL label

where:

label is a program-relative expression. See Register-relative and
program-relative expressions on page 3-23 for more information.

Usage

The BL instruction copies the address of the next instruction into r14 (lr, the link
register), and causes a branch to label.

The machine-level instruction cannot branch to an address outside ±4Mb of the current
instruction. When necessary, the ARM linker inserts code (a veneer) to allow longer
branches (see The ARM linker chapter in ADS Compiler, Linker, and Utilities Guide).

Architectures

This instruction is available in all T variants of the ARM architecture.

Example

 BL extract
5-34 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Thumb Instruction Reference
5.4.3 BX

Branch, and optionally exchange instruction set.

Syntax

BX Rm

where:

Rm is an ARM register containing the address to branch to.

Bit 0 of Rm is not used as part of the address.

If bit 0 of Rm is clear:

• bit 1 must also be clear

• the instruction clears the T flag in the CPSR, and the code at the
destination is interpreted as ARM code.

Usage

The BX instruction causes a branch to the address held in Rm, and changes instruction set
to Thumb if bit 0 of Rm is set.

Architectures

This instruction is available in all T variants of the ARM architecture.

Examples

 BX r5
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 5-35

Thumb Instruction Reference
5.4.4 BLX

Branch with Link, and optionally exchange instruction set.

Syntax

BLX Rm

BLX label

where:

Rm is an ARM register containing the address to branch to.

Bit 0 of Rm is not used as part of the address. If bit 0 of Rm is clear:

• Bit 1 must also be clear.

• The instruction clears the T flag in the CPSR. Code at the
destination is interpreted as ARM code.

label is a program-relative expression. See Register-relative and
program-relative expressions on page 3-23 for more information.

BLX label always causes a change to ARM state.

Usage

The BLX instruction:

• copies the address of the next instruction into r14 (lr, the link register)

• causes a branch to label, or to the address held in Rm

• changes instruction set to ARM if either:

— bit 0 of Rm is clear

— the BLX label form is used.

The machine-level instruction cannot branch to an address outside ±4Mb of the current
instruction. When necessary, the ARM linker inserts code (a veneer) to allow longer
branches (see The ARM linker chapter in ADS Compiler, Linker, and Utilities Guide).

Architectures

This instruction is available in all T variants of ARM architecture version 5 and above.

Examples

 BLX r6
 BLX armsub
5-36 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Thumb Instruction Reference
5.5 Thumb software interrupt and breakpoint instructions

This section contains the following subsections:

• SWI on page 5-37

• BKPT on page 5-38.

5.5.1 SWI

Software interrupt.

Syntax

SWI immed_8

where:

immed_8 is a numeric expression evaluating to an integer in the range 0-255.

Usage

The SWI instruction causes a SWI exception. This means that the processor state changes
to ARM, the processor mode changes to Supervisor, the CPSR is saved to the
Supervisor Mode SPSR, and execution branches to the SWI vector (see the Handling
Processor Exceptions chapter in ADS Developer Guide).

immed_8 is ignored by the processor. However, it is present in bits[7:0] of the instruction
opcode. It can be retrieved by the exception handler to determine what service is being
requested.

Condition flags

This instruction does not affect the flags.

Architectures

This instruction is available in all T variants of the ARM architecture.

Example

 SWI 12
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 5-37

Thumb Instruction Reference
5.5.2 BKPT

Breakpoint.

Syntax

BKPT immed_8

where:

immed_8 is an expression evaluating to an integer in the range 0-255.

Usage

The BKPT instruction causes the processor to enter Debug mode. Debug tools can use this
to investigate system state when the instruction at a particular address is reached.

immed_8 is ignored by the processor. However, it is present in bits[7:0] of the instruction
opcode. It can be used by a debugger to store additional information about the
breakpoint.

Architectures

This instruction is available in T variants of ARM architecture version 5 and above.

Examples

 BKPT 67
 BKPT 2_10110
5-38 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Thumb Instruction Reference
5.6 Thumb pseudo-instructions

The ARM assembler supports a number of Thumb pseudo-instructions that are
translated into the appropriate Thumb instructions at assembly time.

The pseudo-instructions that are available in Thumb state are in the following sections:

• ADR Thumb pseudo-instruction on page 5-40

• LDR Thumb pseudo-instruction on page 5-41

• NOP Thumb pseudo-instruction on page 5-43.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 5-39

Thumb Instruction Reference
5.6.1 ADR Thumb pseudo-instruction

The ADR pseudo-instruction loads a program-relative address into a register.

Syntax

ADR register, expr

where:

register is the register to load.

expr is a program-relative expression. The offset must be positive and less
than 1KB. expr must be defined locally, it cannot be imported.

Usage

In Thumb state, ADR can generate word-aligned addresses only. Use the ALIGN directive
to ensure that expr is aligned (see ALIGN on page 7-48).

expr must evaluate to an address in the same code section as the ADR pseudo-instruction.
There is no guarantee that the address will be within range after linking if it resides in
another ELF section.

Example

 ADR r4,txampl ; => ADD r4,pc,#nn
 ; code
 ALIGN
txampl DCW 0,0,0,0
5-40 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Thumb Instruction Reference
5.6.2 LDR Thumb pseudo-instruction

The LDR pseudo-instruction loads a low register with either:

• a 32-bit constant value

• an address.

NoteNote

This section describes the LDR pseudo-instruction only. See Thumb memory access
instructions on page 5-4 for information on the LDR instruction.

Syntax

LDR register, =[expr | label-exp]

where:

register is the register to be loaded. LDR can access the low registers (r0-r7) only.

expr evaluates to a numeric constant:

• if the value of expr is within range of a MOV instruction, the
assembler generates the instruction

• if the value of expr is not within range of a MOV instruction, the
assembler places the constant in a literal pool and generates a
program-relative LDR instruction that reads the constant from the
literal pool.

label-exp is a program-relative or external expression. The assembler places the
value of label-exp in a literal pool and generates a program-relative LDR

instruction that loads the value from the literal pool.

If label-exp is an external expression, or is not contained in the current
section, the assembler places a linker relocation directive in the object
file. The linker ensures that the correct address is generated at link time.

The offset from the pc to the value in the literal pool must be positive and less than 1KB.
You are responsible for ensuring that there is a literal pool within range. See LTORG on
page 7-13 for more information.

Usage

The LDR pseudo-instruction is used for two main purposes:

• To generate literal constants when an immediate value cannot be moved into a
register because it is out of range of the MOV instruction.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 5-41

Thumb Instruction Reference
• To load a program-relative or external address into a register. The address remains
valid regardless of where the linker places the ELF section containing the LDR.

Example

 LDR r1, =0xfff ; loads 0xfff into r1

 LDR r2, =labelname ; loads the address of labelname into r2
5-42 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Thumb Instruction Reference
5.6.3 NOP Thumb pseudo-instruction

NOP generates the preferred Thumb no-operation instruction.

The following instruction might be used, but this is not guaranteed:

 MOV r8,r8

Syntax

The syntax for NOP is:

NOP

Condition flags

ALU status flags are unaltered by NOP.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 5-43

Thumb Instruction Reference
5-44 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Chapter 6-
Vector Floating-point Programming

This chapter provides reference information about programming the Vector
Floating-point coprocessor in Assembly language. It contains the following sections:

• The vector floating-point coprocessor on page 6-4

• Floating-point registers on page 6-5

• Vector and scalar operations on page 6-7

• VFP and condition codes on page 6-8

• VFP system registers on page 6-10

• Flush-to-zero mode on page 6-13

• VFP instructions on page 6-15

• VFP pseudo-instruction on page 6-34

• VFP directives and vector notation on page 6-35.

See Table 6-1 on page 6-2 for locations of descriptions of individual instructions.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 6-1

Vector Floating-point Programming
Table 6-1 Location of descriptions of VFP instructions

Mnemonic Brief description Page Operation

FABS Absolute value page 6-16 Vector

FADD Add page 6-17 Vector

FCMP Compare page 6-18 Scalar

FCPY Copy page 6-16 Vector

FCVTDS Convert single-precision to double-precision page 6-19 Scalar

FCVTSD Convert double-precision to single-precision page 6-20 Scalar

FDIV Divide page 6-21 Vector

FLD Load (see also FLD pseudo-instruction on page 6-34) page 6-22 Scalar

FLDM Load multiple page 6-24 -

FMAC Multiply-accumulate page 6-26 Scalar

FMDHR, FMDLR Transfer from ARM register to double-precision page 6-27 Scalar

FMRDH, FMRDL Transfer from double-precision to ARM register page 6-27 Scalar

FMRS Transfer from single-precision to ARM register page 6-28 Scalar

FMRX Transfer from VFP system register to ARM register page 6-29 -

FMSC Multiply-subtract page 6-26 Vector

FMSR Transfer from ARM register to single-precision page 6-28 Scalar

FMSTAT Transfer VFP status flags to ARM CPSR status flags page 6-29 -

FMUL Multiply page 6-30 Vector

FMXR Transfer from ARM register to VFP system register page 6-29 -

FNEG Negate page 6-16 Vector

FNMAC Negate-multiply-accumulate page 6-26 Vector

FNMSC Negate-multiply-subtract page 6-26 Vector

FNMUL Negate-multiply page 6-30 Vector

FSITO Convert signed integer to floating-point page 6-31 Scalar

FSQRT Square Root page 6-32 Vector
6-2 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Vector Floating-point Programming
FST Store page 6-22 Scalar

FSTM Store multiple page 6-24 —

FSUB Subtract page 6-17 Vector

FTOSI, FTOUI Convert floating-point to signed or unsigned integer page 6-33 Scalar

FUITO Convert unsigned integer to floating-point page 6-31 Scalar

Table 6-1 Location of descriptions of VFP instructions (continued)

Mnemonic Brief description Page Operation
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 6-3

Vector Floating-point Programming
6.1 The vector floating-point coprocessor

The Vector floating-point coprocessor, together with associated support code, provides
single-precision and double-precision floating-point arithmetic, as defined by
ANSI/IEEE Std. 754-1985 IEEE Standard for Binary Floating-Point Arithmetic. This
document is referred to as the IEEE 754 standard in this chapter. There is a summary of
the standard in the floating-point chapter in ADS Compiler, Linker, and Utilities Guide.

Short vectors of up to eight single-precision or four double-precision numbers are
handled particularly efficiently. Most arithmetic instructions can be used on these
vectors, allowing single-instruction, multiple-data (SIMD) parallelism. In addition, the
floating-point load and store instructions have multiple register forms, allowing vectors
to be transferred to and from memory efficiently.

For further details of the vector floating-point coprocessor, see ARM Architecture
Reference Manual.
6-4 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Vector Floating-point Programming
6.2 Floating-point registers

The Vector Floating-point coprocessor has 32 single-precision registers, s0 to s31. Each
register can contain either a single-precision floating-point value, or a 32-bit integer.

These 32 registers are also treated as 16 double-precision registers, d0 to d15. dn
occupies the same hardware as s(2n) and s(2n+1).

You can use:

• some registers for single-precision values at the same time as you are using others
for double-precision values

• the same registers for single-precision values and double-precision values at
different times.

Do not attempt to use corresponding single-precision and double-precision registers at
the same time. No damage is caused but the results are meaningless.

6.2.1 Register banks

The VFP registers are arranged as four banks of:

• eight single-precision registers, s0 to s7, s8 to s15, s16 to s23, and s24 to s31

• four double-precision registers, d0 to d3, d4 to d7, d8 to d11, and d12 to d15

• any combination of single-precision and double-precision registers.

See Figure 6-1 for further clarification.

Figure 6-1 VFP register banks

����� ����� ����� �����

�� �� �� �� �� �� ��� ��� ����� ������ ���

�� �� �� �� ��� ��� ��� ��� ����� �� �� �� �� ��� ��� ���
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 6-5

Vector Floating-point Programming
6.2.2 Vectors

A vector can use up to eight single-precision registers, or four double-precision
registers, from the same bank. The number of registers used by a vector is controlled by
the LEN bits in the FPSCR (see FPSCR, the floating-point status and control register on
page 6-10).

A vector can start from any register. The first register used by a vector is specified in
the register fields in the individual instructions.

Vector wrap-around

If the vector extends beyond the end of a bank, it wraps around to the beginning of the
same bank, for example:

• a vector of length 6 starting at s5 is {s5, s6, s7, s0, s1, s2}

• a vector of length 3 starting at s15 is {s15, s8, s9}

• a vector of length 4 starting at s22 is {s22, s23, s16, s17}

• a vector of length 2 starting at d7 is {d7, d4}

• a vector of length 3 starting at d10 is {d10, d11, d8}.

A vector cannot contain registers from more than one bank.

Vector stride

Vectors can occupy consecutive registers, as in the examples above, or they can occupy
alternate registers. This is controlled by the STRIDE bits in the FPSCR (see FPSCR, the
floating-point status and control register on page 6-10). For example:

• a vector of length 3, stride 2, starting at s1, is {s1, s3, s5}

• a vector of length 4, stride 2, starting at s6, is {s6, s0, s2, s4}

• a vector of length 2, stride 2, starting at d1, is {d1, d3}.

Restriction on vector length

A vector cannot use the same register twice. Allowing for vector wrap-around, this
means that you cannot have:

• a single-precision vector with length > 4 and stride = 2

• a double-precision vector with length > 4 and stride = 1

• a double-precision vector with length > 2 and stride = 2.
6-6 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Vector Floating-point Programming
6.3 Vector and scalar operations

You can use VFP arithmetic instructions to operate:

• on scalars

• on vectors

• on scalars and vectors together.

Use the LEN bits in the FPSCR to control the length of vectors (see FPSCR, the
floating-point status and control register on page 6-10).

When LEN is 1 all operations are scalar.

6.3.1 Control of scalar, vector and mixed operations

When LEN is greater than 1, the behavior of arithmetic operations depends on which
register bank the destination and operand registers are in (see Register banks on
page 6-5).

The behavior of instructions of the following general forms:

 Op Fd,Fn,Fm
 Op Fd,Fm

is as follows:

• If Fd is in the first bank of registers, s0 to s7 or d0 to d3, the operation is scalar.

• If the Fm is in the first bank of registers, but Fd is not, the operation is mixed.

• If neither Fd nor Fm are in the first bank of registers, the operation is vector.

Scalar operations

Op acts on the value in Fm, and the value in Fn if present. The result is placed in Fd.

Vector operations

Op acts on the values in the vector starting at Fm, together with the values in the vector
starting at Fn if present. The results are placed in the vector starting at Fd.

Mixed scalar and vector operations

For single-operand instructions, Op acts on the single value in Fm. LEN copies of the result
are placed in the vector starting at Fd.

For multiple-operand instructions, Op acts on the single value in Fm, together with the
values in the vector starting at Fn. The results are placed in the vector starting at Fd.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 6-7

Vector Floating-point Programming
6.4 VFP and condition codes

You can use a condition code to control the execution of any VFP instruction. The
instruction is executed conditionally, according to the status flags in the CPSR, in
exactly the same way as almost all other ARM instructions.

The only VFP instruction that can be used to update the status flags is FCMP. It does not
update the flags in the CPSR directly, but updates a separate set of flags in the FPSCR
(see FPSCR, the floating-point status and control register on page 6-10).

NoteNote

To use these flags to control conditional instructions, including conditional VFP
instructions, you must first copy them into the CPSR using an FMSTAT instruction (see
FMRX, FMXR, and FMSTAT on page 6-29).

Following an FCMP instruction, the precise meanings of the flags are different from their
meanings following an ARM data-processing instruction. This is because:

• floating-point values are never unsigned, so the unsigned conditions are not
needed

• Not-a-Number (NaN) values have no ordering relationship with numbers or with
each other, so additional conditions are needed to allow for unordered results.

The meanings of the condition code mnemonics are shown in Table 6-2 on page 6-9.
6-8 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Vector Floating-point Programming
NoteNote

The type of the instruction that last updated the flags in the CPSR determines the
meaning of condition codes.

Table 6-2 Condition codes

Mnemonic Meaning after ARM data processing instruction Meaning after VFP FCMP instruction

EQ Equal Equal

NE Not equal Not equal, or unordered

CS / HS Carry set / Unsigned higher or same Greater than or equal, or unordered

CC / LO Carry clear / Unsigned lower Less than

MI Negative Less than

PL Positive or zero Greater than or equal, or unordered

VS Overflow Unordered (at least one NaN operand)

VC No overflow Not unordered

HI Unsigned higher Greater than, or unordered

LS Unsigned lower or same Less than or equal

GE Signed greater than or equal Greater than or equal

LT Signed less than Less than, or unordered

GT Signed greater than Greater than

LE Signed less than or equal Less than or equal, or unordered

AL Always (normally omitted) Always (normally omitted)
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 6-9

Vector Floating-point Programming
6.5 VFP system registers

Three VFP system registers are accessible to you in all implementations of VFP:

• FPSCR, the floating-point status and control register

• FPEXC, the floating-point exception register on page 6-12

• FPSID, the floating-point system ID register on page 6-12.

A particular implementation of VFP can have additional registers (see the data sheet for
the VFP coprocessor you are using).

6.5.1 FPSCR, the floating-point status and control register

The FPSCR contains all the user-level VFP status and control bits:

bits[31:28] are the N, Z, C, and V flags. These are the VFP status flags. They cannot
be used to control conditional execution until they have been copied into
the status flags in the CPSR (see VFP and condition codes on page 6-8).

bit[24] is the flush-to-zero mode control bit:

0 flush-to-zero mode is disabled.

1 flush-to-zero mode is enabled.

Flush-to-zero mode can allow greater performance, depending on your
hardware and software, at the expense of loss of range (see Flush-to-zero
mode on page 6-13).

NoteNote

Flush-to-zero mode must not be used when IEEE 754 compatibility is a
requirement.

bits[23:22] control rounding mode as follows:

0b00 Round to Nearest (RN) mode

0b01 Round towards Plus infinity (RP) mode

0b10 Round towards Minus infinity (RM) mode

0b11 Round towards Zero (RZ) mode.

bits[21:20] STRIDE is the distance between successive values in a vector (see Vectors
on page 6-6). Stride is controlled as follows:

0b00 stride = 1

0b11 stride = 2.
6-10 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Vector Floating-point Programming
bits[18:16] LEN is the number of registers used by each vector (see Vectors on
page 6-6). It is 1 + the value of bits[18:16]:

0b000 LEN = 1

.

.

0b111 LEN = 8.

bits[12:8] are the exception trap enable bits:

IXE inexact exception enable

UFE underflow exception enable

OFE overflow exception enable

DZE division by zero exception enable

IOE invalid operation exception enable.

This Guide does not cover the use of floating-point exception trapping.
For information see the data sheet for the VFP coprocessor you are using.

bits[4:0] are the cumulative exception bits:

IXC inexact exception

UFC underflow exception

OFC overflow exception

DZC division by zero exception

IOC invalid operation exception.

Cumulative exception bits are set when the corresponding exception
occurs. They remain set until you clear them by writing directly to the
FPSCR.

all other bits are unused in the basic VFP specification. They can be used in particular
implementations (see the data sheet for the VFP coprocessor you are
using). Do not modify these bits except in accordance with any use in a
particular implementation.

To alter some bits without affecting other bits, use a read-modify-write procedure (see
Modifying individual bits of a VFP system register on page 6-12).
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 6-11

Vector Floating-point Programming
6.5.2 FPEXC, the floating-point exception register

You can only access the FPEXC in privileged modes. It contains the following bits:

bit[31] is the EX bit. You can read it in all VFP implementations. In some
implementations you might also be able to write to it.

If the value is 0, the only significant state in the VFP system is the
contents of the general purpose registers plus FPSCR and FPEXC.

If the value is 1, you need implementation-specific information to save
state (see the data sheet for the VFP coprocessor you are using).

bit[30] is the EN bit. You can read and write it in all VFP implementations.

If the value is 1, the VFP coprocessor is enabled and operates normally.

If the value is 0, the VFP coprocessor is disabled. When the coprocessor
is disabled, you can read or write the FPSID or FPEXC registers, but other
VFP instructions are treated as undefined instructions.

bits[29:0] might be used by particular implementations of VFP. You can use all the
VFP functions described in this chapter without accessing these bits.

You must not alter these bits except in accordance with their use in a
particular implementation (see the data sheet for the VFP coprocessor
you are using).

To alter some bits without affecting other bits, use a read-modify-write procedure (see
Modifying individual bits of a VFP system register).

6.5.3 FPSID, the floating-point system ID register

The FPSID is a read-only register. You can read it to find out which implementation of
the VFP architecture your program is running on.

6.5.4 Modifying individual bits of a VFP system register

To alter some bits of a VFP system register without affecting other bits, use a
read-modify-write procedure similar to the following example:

 FMRX r10,FPSCR ; copy FPSCR into r10
 BIC r10,r10,#0x00370000 ; clears STRIDE and LEN
 ORR r10,r10,#0x00030000 ; sets STRIDE = 1, LEN = 4
 FMXR FPSCR,r10 ; copy r10 back into FPSCR

See FMRX, FMXR, and FMSTAT on page 6-29.
6-12 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Vector Floating-point Programming
6.6 Flush-to-zero mode

Some implementations of VFP use support code to handle denormalized numbers. The
performance of such systems, in calculations involving denormalized numbers, is much
less than it is in normal calculations.

Flush-to-zero mode replaces denormalized numbers with +0. This does not comply with
IEEE 754 arithmetic, but in some circumstances can improve performance
considerably.

6.6.1 When to use flush-to-zero mode

You should select flush-to-zero mode if all the following are true:

• IEEE 754 compliance is not a requirement for your system

• the algorithms you are using are such that they sometimes generate denormalized
numbers

• your system uses support code to handle denormalized numbers

• the algorithms you are using do not depend for their accuracy on the preservation
of denormalized numbers

• the algorithms you are using do not generate frequent exceptions as a result of
replacing denormalized numbers with +0.

You can change between flush-to-zero and normal mode at any time, if different parts
of your code have different requirements. Numbers already in registers are not affected
by changing mode.

6.6.2 The effects of using flush-to-zero mode

With certain exceptions (see Operations not affected by flush-to-zero mode on
page 6-14), flush-to-zero mode has the following effects on floating-point operations:

• A denormalized number is treated as +0 when used as an input to a floating point
operation. The source register is not altered.

• If the result of a single-precision floating-point operation, before rounding, is in
the range –2–126 to +2–126, it is replaced by +0.

• If the result of a double-precision floating-point operation, before rounding, is in
the range –2–1022 to +2–1022, it is replaced by +0.

An inexact exception occurs whenever a denormalized number is used as an operand,
or a result is flushed to zero. Underflow exceptions do not occur in flush-to-zero mode.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 6-13

Vector Floating-point Programming
6.6.3 Operations not affected by flush-to-zero mode

The following operations can be carried out on denormalized numbers even in
flush-to-zero mode, without flushing the results to zero:

• Copy, absolute value, and negate (see FABS, FCPY, and FNEG on page 6-16)

• Load and store (see FLD and FST on page 6-22)

• Load multiple and store multiple (see FLDM and FSTM on page 6-24)

• Transfer between floating-point registers and ARM general-purpose registers
(see FMDHR, FMDLR, FMRDH, and FMRDL on page 6-27 and FMRS and
FMSR on page 6-28).
6-14 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Vector Floating-point Programming
6.7 VFP instructions

This section contains the following subsections:

• FABS, FCPY, and FNEG on page 6-16

Floating-point absolute value, copy, and negate.

• FADD and FSUB on page 6-17

Floating-point add and subtract.

• FCMP on page 6-18

Floating-point compare.

• FCVTDS on page 6-19

Convert single-precision floating-point to double-precision.

• FCVTSD on page 6-20

Convert double-precision floating-point to single-precision.

• FDIV on page 6-21

Floating-point divide.

• FLD and FST on page 6-22

Floating-point load and store.

• FLDM and FSTM on page 6-24

Floating-point load multiple and store multiple.

• FMAC, FNMAC, FMSC, and FNMSC on page 6-26

Floating-point multiply accumulate instructions.

• FMDHR, FMDLR, FMRDH, and FMRDL on page 6-27

Transfer contents between ARM registers and a double-precision floating-point
register.

• FMRS and FMSR on page 6-28

Transfer contents between a single-precision floating-point register and an ARM
register.

• FMRX, FMXR, and FMSTAT on page 6-29

Transfer contents between an ARM register and a VFP system register.

• FMUL and FNMUL on page 6-30

Floating-point multiply and negate-multiply.

• FSITO and FUITO on page 6-31

Convert signed integer to floating-point and unsigned integer to floating-point.

• FSQRT on page 6-32

Floating-point square root.

• FTOSI and FTOUI on page 6-33

Convert floating-point to signed integer and floating-point to unsigned integer.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 6-15

Vector Floating-point Programming
6.7.1 FABS, FCPY, and FNEG

Floating-point copy, absolute value, and negate.

These instructions can be scalar, vector, or mixed (see Vector and scalar operations on
page 6-7).

Syntax

<op><precision>{cond} Fd, Fm

where:

<op> must be one of FCPY, FABS, or FNEG.

<precision> must be either S for single-precision, or D for double-precision.

cond is an optional condition code (see VFP and condition codes on
page 6-8).

Fd is the VFP register for the result.

Fm is the VFP register holding the operand.

The precision of Fd and Fm must match the precision specified in <precision>.

Usage

The FCPY instruction copies the contents ofFm into Fd.

The FABS instruction takes the contents of Fm, clears the sign bit, and places the result in
Fd. This gives the absolute value.

The FNEG instruction takes the contents of Fm, changes the sign bit, and places the result
in Fd. This gives the negation of the value.

If the operand is a NaN, the sign bit is determined in each case as above, but no
exception is produced.

Exceptions

None of these instructions can produce any exceptions.

Examples

 FABSD d3, d5
 FNEGSMI s15, s15
6-16 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Vector Floating-point Programming
6.7.2 FADD and FSUB

Floating-point add and subtract.

FADD and FSUB can be scalar, vector, or mixed (see Vector and scalar operations on
page 6-7).

Syntax

FADD<precision>{cond} Fd, Fn, Fm

FSUB<precision>{cond} Fd, Fn, Fm

where:

<precision> must be either S for single-precision, or D for double-precision.

cond is an optional condition code (see VFP and condition codes on page 6-8).

Fd is the VFP register for the result.

Fn is the VFP register holding the first operand.

Fm is the VFP register holding the second operand.

The precision of Fd, Fn and Fm must match the precision specified in <precision>.

Usage

The FADD instruction adds the values in Fn and Fm and places the result in Fd.

The FSUB instruction subtracts the value in Fm from the value in Fn and places the result
in Fd.

Exceptions

FADD and FSUB instructions can produce Invalid Operation, Overflow, or Inexact
exceptions.

Examples

 FSUBSEQ s2, s4, s17
 FADDDGT d4, d0, d12
 FSUBD d0, d0, d12
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 6-17

Vector Floating-point Programming
6.7.3 FCMP

Floating-point compare.

FCMP is always scalar.

Syntax

FCMP{E}<precision>{cond} Fd, Fm

FCMP{E}Z<precision>{cond} Fd

where:

E is an optional parameter. If E is present, an exception is raised if either
operand is any kind of NaN. Otherwise, an exception is raised only if
either operand is a signalling NaN.

Z is a parameter specifying comparison with zero.

<precision> must be either S for single-precision, or D for double-precision.

cond is an optional condition code (see VFP and condition codes on page 6-8).

Fd is the VFP register holding the first operand.

Fm is the VFP register holding the second operand. Omit Fm for a compare
with zero instruction.

The precision of Fd and Fm must match the precision specified in <precision>.

Usage

The FCMP instruction subtracts the value in Fm from the value in Fd and sets the VFP
condition flags on the result (see VFP and condition codes on page 6-8).

Exceptions

FCMP instructions can produce Invalid Operation exceptions.

Examples

 FCMPS s3, s0
 FCMPEDNE d5, d13
 FCMPZSEQ s2
6-18 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Vector Floating-point Programming
6.7.4 FCVTDS

Convert single-precision floating-point to double-precision.

FCVTDS is always scalar.

Syntax

FCVTDS{cond} Dd, Sm

where:

cond is an optional condition code (see VFP and condition codes on page 6-8).

Dd is a double-precision VFP register for the result.

Sm is a single-precision VFP register holding the operand.

Usage

The FCVTDS instruction converts the single-precision value in Sm to double-precision and
places the result in Dd.

Exceptions

FCVTDS instructions can produce Invalid Operation exceptions.

Examples

 FCVTDS d5, s7
 FCVTDSGT d0, s4
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 6-19

Vector Floating-point Programming
6.7.5 FCVTSD

Convert double-precision floating-point to single-precision.

FCVTSD is always scalar.

Syntax

FCVTSD{cond} Sd, Dm

where:

cond is an optional condition code (see VFP and condition codes on page 6-8).

Sd is a single-precision VFP register for the result.

Dm is a double-precision VFP register holding the operand.

Usage

The FCVTSD instruction converts the double-precision value in Dm to single-precision and
places the result in Sd.

Exceptions

FCVTSD instructions can produce Invalid Operation, Overflow, Underflow, or Inexact
exceptions.

Examples

 FCVTSD s3, d14
 FCVTSDMI s0, d1
6-20 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Vector Floating-point Programming
6.7.6 FDIV

Floating-point divide. FDIV can be scalar, vector, or mixed (see Vector and scalar
operations on page 6-7).

Syntax

FDIV<precision>{cond} Fd, Fn, Fm

where:

<precision> must be either S for single-precision, or D for double-precision.

cond is an optional condition code (see VFP and condition codes on page 6-8).

Fd is the VFP register for the result.

Fn is the VFP register holding the first operand.

Fm is the VFP register holding the second operand.

The precision of Fd, Fn and Fm must match the precision specified in <precision>.

Usage

The FDIV instruction divides the value in Fn by the value in Fm and places the result in Fd.

Exceptions

FDIV operations can produce Division by Zero, Invalid Operation, Overflow, Underflow,
or Inexact exceptions.

Examples

 FDIVS s8, s0, s12
 FDIVSNE s2, s27, s28
 FDIVD d10, d2, d10
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 6-21

Vector Floating-point Programming
6.7.7 FLD and FST

Floating-point load and store.

Syntax

FLD<precision>{cond} Fd, [Rn{, #offset}]

FST<precision>{cond} Fd, [Rn{, #offset}]

FLD<precision>{cond} Fd, label

FST<precision>{cond} Fd, label

where:

<precision> must be either S for single-precision, or D for double-precision.

cond is an optional condition code (see VFP and condition codes on page 6-8).

Fd is the VFP register to be loaded or saved. The precision of Fd must match
the precision specified in <precision>.

Rn is the ARM register holding the base address for the transfer.

offset is an optional numeric expression. It must evaluate to a numeric constant
at assembly time. The value must be a multiple of 4, and lie in the range
–1020 to +1020. The value is added to the base address to form the
address used for the transfer.

label is a program-relative expression. See Register-relative and
program-relative expressions on page 3-23 for more information.

label must be within ±1KB of the current instruction.

Usage

The FLD instruction loads a floating-point register from memory. The FST instruction
saves the contents of a floating-point register to memory.

One word is transferred if <precision> is S. Two words are transferred if <precision> is
D.

There is also an FLD pseudo-instruction (see FLD pseudo-instruction on page 6-34).

Examples

 FLDD d5, [r7, #-12]
 FLDSNE s3, [r2, #72+count]
6-22 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Vector Floating-point Programming
 FSTS s2, [r5]
 FLDD d2, [r15, #addr-{PC}]
 FLDS s9, fpconst
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 6-23

Vector Floating-point Programming
6.7.8 FLDM and FSTM

Floating-point load multiple and store multiple.

Syntax

FLDM<addressmode><precision>{cond} Rn,{!} VFPregisters

FSTM<addressmode><precision>{cond} Rn,{!} VFPregisters

where:

<addressmode> must be one of:

IA meaning Increment address After each transfer.

DB meaning Decrement address Before each transfer.

EA meaning Empty Ascending stack operation. This is the
same as DB for loads, and the same as IA for saves.

FD meaning Full Descending stack operation. This is the
same as IA for loads, and the same as DB for saves.

<precision> must be one of:

S for single-precision

D for double-precision

X for unspecified precision.

cond is an optional condition code (see VFP and condition codes on
page 6-8).

Rn is the ARM register holding the base address for the transfer.

! is optional. ! specifies that the updated base address must be
written back to Rn.

NoteNote

If ! is not specified, <addressmode> must be IA.

VFPregisters is a list of consecutive floating-point registers enclosed in braces,
{ and }. The list can be comma-separated, or in range format.
There must be at least one register in the list.
6-24 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Vector Floating-point Programming
Usage

The FLDM instruction loads several consecutive floating-point registers from memory.

The FSTM instruction saves the contents of several consecutive floating-point registers to
memory.

If <precision> is specified as D, VFPregisters must be a list of double-precision registers,
and two words are transferred for each register in the list.

If <precision> is specified as S, VFPregisters must be a list of single-precision registers,
and one word is transferred for each register in the list.

Unspecified precision

If <precision> is specified as X, VFPregisters must be specified as double-precision
registers. However, any or all of the specified double-precision registers can actually
contain two single-precision values or integers.

The number of words transferred might be 2n or (2n + 1), where n is the number of
double-precision registers in the list. This is implementation dependent. However, if
writeback is specified, Rn is always adjusted by (2n + 1) words.

You must only use unspecified-precision loads and saves in matched pairs, to save and
restore data. The format of the saved data is implementation-dependent.

Examples

 FLDMIAS r2, {s1-s5}
 FSTMFDD r13!, {d3-d6}
 FSTMIAS r0!, {s31}

The following instructions are equivalent:

 FLDMIAS r7, {s3-s7}
 FLDMIAS r7, {s3,s4,s5,s6,s7}

The following instructions must always be used as a matching pair:

 FSTMFDX r13!, {d0-d3}
 FLDMFDX r13!, {d0-d3}

The following instruction is illegal, as the registers in the list are not consecutive:

 FLDMIAD r13!, {d0,d2,d3}
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 6-25

Vector Floating-point Programming
6.7.9 FMAC, FNMAC, FMSC, and FNMSC

Floating-point multiply-accumulate, negate-multiply-accumulate, multiply-subtract
and negate-multiply-subtract. These instructions can be scalar, vector, or mixed (see
Vector and scalar operations on page 6-7).

Syntax

<op><precision>{cond} Fd, Fn, Fm

where:

<op> must be one of FMAC, FNMAC, FMSC, or FNMSC.

<precision> must be either S for single-precision, or D for double-precision.

cond is an optional condition code (see VFP and condition codes on page 6-8).

Fd is the VFP register for the result.

Fn is the VFP register holding the first operand.

Fm is the VFP register holding the second operand.

The precision of Fd, Fn and Fm must match the precision specified in <precision>.

Usage

The FMAC instruction calculates Fd + Fn * Fm and places the result in Fd.

The FNMAC instruction calculates Fd – Fn * Fm and places the result in Fd.

The FMSC instruction calculates –Fd + Fn * Fm and places the result in Fd.

The FNMSC instruction calculates –Fd – Fn * Fm and places the result in Fd.

Exceptions

These operations can produce Invalid Operation, Overflow, Underflow, or Inexact
exceptions.

Examples

 FMACD d8, d0, d8
 FMACS s20, s24, s28
 FNMSCSLE s6, s0, s26
6-26 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Vector Floating-point Programming
6.7.10 FMDHR, FMDLR, FMRDH, and FMRDL

Transfer contents between ARM registers and a double-precision floating-point
register.

Syntax

<op>{cond} Dn, Rd

where:

<op> is one of:

FMDHR copy the contents of Rd into the high half of Dn

FMDLR copy the contents of Rd into the low half of Dn

FMRDH copy the contents of the high half of Dn into Rd

FMRDL copy the contents of the low half of Dn into Rd.

cond is an optional condition code (see VFP and condition codes on page 6-8).

Dn is the VFP double-precision register.

Rd is the ARM register.

Usage

These instructions are used together as matched pairs:

• Use FMDHR with FMDLR

• Use FMRDH with FMRDL.

Exceptions

These instructions do not produce any exceptions.

Examples

 FMDHR d5, r3
 FMDLR d5, r12
 FMRDH r5, d3
 FMRDL r9, d3
 FMDLRPL d2, r1
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 6-27

Vector Floating-point Programming
6.7.11 FMRS and FMSR

Transfer contents between a single-precision floating-point register and an ARM
register.

Syntax

FMRS{cond} Rd, Sn

FMSR{cond} Sn, Rd

where:

cond is an optional condition code (see VFP and condition codes on page 6-8).

Sn is the VFP double-precision register.

Rd is the ARM register.

Usage

The FMRS instruction transfers the contents of Sn into Rd.

The FMSR instruction transfers the contents of Rd into Sn.

Exceptions

These instructions do not produce any exceptions.

Examples

 FMRS r2, s0
 FMSRNE s30, r5
6-28 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Vector Floating-point Programming
6.7.12 FMRX, FMXR, and FMSTAT

Transfer contents between an ARM register and a VFP system register.

Syntax

FMRX{cond} Rd, VFPsysreg

FMXR{cond} VFPsysreg, Rd

FMSTAT{cond}

where:

cond is an optional condition code (see VFP and condition codes on page 6-8).

VFPsysreg is the VFP system register, usually FPSCR, FPSID, or FPEXC (see
Floating-point registers on page 6-5).

Rd is the ARM register.

Usage

The FMRX instruction transfers the contents of VFPsysreg into Rd.

The FMXR instruction transfers the contents of Rd into VFPsysreg.

The FMSTAT instruction is a synonym for FMRX r15, FPSCR. It transfers the floating-point
condition flags to the corresponding flags in the ARM CPSR (see VFP and condition
codes on page 6-8).

NoteNote

These instructions stall the ARM until all current VFP operations complete.

Exceptions

These instructions do not produce any exceptions.

Examples

 FMSTAT
 FMSTATNE
 FMXR FPSCR, r2
 FMRX r3, FPSID
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 6-29

Vector Floating-point Programming
6.7.13 FMUL and FNMUL

Floating-point multiply and negate-multiply. FMUL and FNMUL can be scalar, vector, or
mixed (see Vector and scalar operations on page 6-7).

Syntax

FMUL<precision>{cond} Fd, Fn, Fm

FNMUL<precision>{cond} Fd, Fn, Fm

where:

<precision> must be either S for single-precision, or D for double-precision.

cond is an optional condition code (see VFP and condition codes on page 6-8).

Fd is the VFP register for the result.

Fn is the VFP register holding the first operand.

Fm is the VFP register holding the second operand.

The precision of Fd, Fn and Fm must match the precision specified in <precision>.

Usage

The FMUL instruction multiplies the values in Fn and Fm and places the result in Fd.

The FNMUL instruction multiplies the values in Fn and Fm and places the negation of the
result in Fd.

Exceptions

FMUL and FNMUL operations can produce Invalid Operation, Overflow, Underflow, or
Inexact exceptions.

Examples

 FNMULS s10, s10, s14
 FMULDLT d0, d7, d8
6-30 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Vector Floating-point Programming
6.7.14 FSITO and FUITO

Convert signed integer to floating-point and unsigned integer to floating-point.

FSITO and FUITO are always scalar.

Syntax

FSITO<precision>{cond} Fd, Sm

FUITO<precision>{cond} Fd, Sm

where:

<precision> must be either S for single-precision, or D for double-precision.

cond is an optional condition code (see VFP and condition codes on page 6-8).

Fd is a VFP register for the result. The precision of Fd must match the
precision specified in <precision>.

Sm is a single-precision VFP register holding the integer operand.

Usage

The FSITO instruction converts the signed integer value in Sm to floating-point and places
the result in Fd.

The FUITO instruction converts the unsigned integer value in Sm to floating-point and
places the result in Fd.

Exceptions

FSITOS and FUITOS instructions can produce Inexact exceptions.

FSITOD and FUITOD instructions do not produce any exceptions.

Examples

 FUITOD d3, s31 ; unsigned integer to double-precision
 FSITOD d5, s16 ; signed integer to double-precision
 FSITOSNE s2, s2 ; signed integer to single-precision
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 6-31

Vector Floating-point Programming
6.7.15 FSQRT

Floating-point square root instruction. This instruction can be scalar, vector, or mixed
(see Vector and scalar operations on page 6-7).

Syntax

FSQRT<precision>{cond} Fd, Fm

where:

<precision> must be either S for single-precision, or D for double-precision.

cond is an optional condition code (see VFP and condition codes on page 6-8).

Fd is the VFP register for the result.

Fm is the VFP register holding the operand.

The precision of Fd and Fm must match the precision specified in <precision>.

Usage

The FSQRT instruction calculates the square root of the value of the contents of Fm and
places the result in Fd.

Exceptions

FSQRT operations can produce Invalid Operation or Inexact exceptions.

Examples

 FSQRTS s4, s28
 FSQRTD d14, d6
 FSQRTSNE s15, s13
6-32 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Vector Floating-point Programming
6.7.16 FTOSI and FTOUI

Convert floating-point to signed integer and floating-point to unsigned integer.

FTOSI and FTOUI are always scalar.

Syntax

FTOSI{Z}<precision>{cond} Sd, Fm

FTOUI{Z}<precision>{cond} Sd, Fm

where:

Z is an optional parameter specifying rounding towards zero. If specified,
this overrides the rounding mode currently specified in the FPSCR. The
FPSCR is not altered.

<precision> must be either S for single-precision, or D for double-precision.

cond is an optional condition code (see VFP and condition codes on page 6-8).

Sd is a single-precision VFP register for the integer result.

Fm is a VFP register holding the operand. The precision of Fm must match the
precision specified in <precision>.

Usage

The FTOSI instruction converts the floating-point value in Fm to a signed integer and
places the result in Sd.

The FTOUI instruction converts the floating-point value in Fm to an unsigned integer and
places the result in Sd.

Exceptions

FTOSI and FTOUI instructions can produce Invalid Operation or Inexact exceptions.

Examples

 FTOSID s10, d2
 FTOUID s3, d1
 FTOSIZS s3, s31
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 6-33

Vector Floating-point Programming
6.8 VFP pseudo-instruction

There is one VFP pseudo-instruction.

6.8.1 FLD pseudo-instruction

The FLD pseudo-instruction loads a VFP floating-point register with a single-precision
or double-precision floating-point constant.

NoteNote
You can use FLD only if the command line option -fpu is set to vfp or softvfp+vfp.

This section describes the FLD pseudo-instruction only. See FLD and FST on page 6-22
for information on the FLD instruction.

Syntax

FLD<precision>{cond} fp-register,=fp-literal

where:

<precision> can be S for single-precision, or D for double-precision.

cond is an optional condition code.

fp-register is the floating-point register to be loaded.

fp-literal is a single-precision or double-precision floating-point literal (see
Floating-point literals on page 3-22).

Usage

The assembler places the constant in a literal pool and generates a program-relative FLD

instruction to read the constant from the literal pool. One word in the literal pool is used
to store a single-precision constant. Two words are used to store a double-precision
constant.

The offset from pc to the constant must be less than 1KB. You are responsible for
ensuring that there is a literal pool within range. See LTORG on page 7-13 for more
information.

Examples

 FLDD d1,=3.12E106 ; loads 3.12E106 into d1
 FLDS s31,=3.12E-16 ; loads 3.12E-16 into s31
6-34 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Vector Floating-point Programming
6.9 VFP directives and vector notation

This section applies only to armasm. The inline assemblers in the C and C++ compilers
do not accept these directives or vector notation.

You can make assertions about VFP vector lengths and strides in your code, and have
them checked by the assembler. See:

• VFPASSERT SCALAR on page 6-36

• VFPASSERT VECTOR on page 6-37.

If you use VFPASSERT directives, you must specify vector details in all VFP data
processing instructions. The vector notation is described below. If you do not use
VFPASSERT directives you must not use this vector notation.

In VFP data processing instructions, specify vectors of VFP registers using angle
brackets:

• sn is a single-precision scalar register n

• sn<> is a single-precision vector whose length and stride are given by the current
vector length and stride, starting at register n

• sn<L> is a single-precision vector of length L, stride 1, starting at register n

• sn<L:S> is a single-precision vector of length L, stride S, starting at register n

• dn is a double-precision scalar register n

• dn<> is a double-precision vector whose length and stride are given by the current
vector length and stride, starting at register n

• dn<L> is a double-precision vector of length L, stride 1, starting at register n

• dn<L:S> is a double-precision vector of length L, stride S, starting at register n.

You can use this vector notation with names defined using the DN and SN directives (see
DN and SN on page 7-10).

You must not use this vector notation in the DN and SN directives themselves.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 6-35

Vector Floating-point Programming
6.9.1 VFPASSERT SCALAR

The VFPASSERT SCALAR directive informs the assembler that following VFP instructions
are in scalar mode.

Syntax

VFPASSERT SCALAR

Usage

Use the VFPASSERT SCALAR directive to mark the end of any block of code where the VFP
mode is VECTOR.

Place the VFPASSERT SCALAR directive immediately after the instruction where the change
occurs. This is usually an FMXR instruction, but might be a BL instruction.

If a function expects the VFP to be in vector mode on exit, place a VFPASSERT SCALAR

directive immediately after the last instruction. Such a function would not be ATPCS
conformant. See the Using the Procedure Call Standard chapter in ADS Developer
Guide for further information.

See also:

• VFP directives and vector notation on page 6-35

• VFPASSERT VECTOR on page 6-37.

NoteNote

This directive does not generate any code. It is only an assertion by the programmer.
The assembler produces error messages if any such assertions are inconsistent with each
other, or with any vector notation in VFP data processing instructions.

The assembler faults vector notation in VFP data processing instructions following a
VFPASSERT SCALAR directive, even if the vector length is 1.

Example

 VFPASSERT SCALAR ; scalar mode
 faddd d4, d4, d0 ; okay
 fadds s4<3>, s0, s8<3> ; ERROR, vector in scalar mode
 fabss s24<1>, s28<1> ; ERROR, vector in scalar mode
 ; (even though length==1)
6-36 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Vector Floating-point Programming
6.9.2 VFPASSERT VECTOR

The VFPASSERT VECTOR directive informs the assembler that following VFP instructions
are in vector mode. It can also specify the length and stride of the vectors.

Syntax

VFPASSERT VECTOR[<[n[:s]]>]

where:

n is the vector length, 1-8.

s is the vector stride, 1-2.

Usage

Use the VFPASSERT VECTOR directive to mark the start of a block of instructions where the
VFP mode is VECTOR, and to mark changes in the length or stride of vectors.

Place the VFPASSERT VECTOR directive immediately after the instruction where the change
occurs. This is usually an FMXR instruction, but might be a BL instruction.

If a function expects the VFP to be in vector mode on entry, place a VFPASSERT VECTOR

directive immediately before the first instruction. Such a function would not be ATPCS
conformant. See the Using the Procedure Call Standard chapter in ADS Developer
Guide for further information.

See:

• VFP directives and vector notation on page 6-35

• VFPASSERT SCALAR on page 6-36.

NoteNote

This directive does not generate any code. It is only an assertion by the programmer.
The assembler produces error messages if any such assertions are inconsistent with each
other, or with any vector notation in VFP data processing instructions.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 6-37

Vector Floating-point Programming
Example

 FMRX r10,FPSCR
 BIC r10,r10,#0x00370000
 ORR r10,r10,#0x00020000 ; set length = 3, stride = 1
 FMXR FPSCR,r10

 VFPASSERT VECTOR ; assert vector mode, unspecified length and stride
 faddd d4, d4, d0 ; ERROR, scalar in vector mode
 fadds s16<3>, s0, s8<3> ; okay
 fabss s24<1>, s28<1> ; wrong length, but not faulted (unspecified)

 FMRX r10,FPSCR
 BIC r10,r10,#0x00370000
 ORR r10,r10,#0x00030000 ; set length = 4, stride = 1
 FMXR FPSCR,r10

 VFPASSERT VECTOR<4> ; assert vector mode, length 4, stride 1
 fadds s24<4>, s0, s8<4> ; okay
 fabss s24<2>, s24<2> ; ERROR, wrong length

 FMRX r10,FPSCR
 BIC r10,r10,#0x00370000
 ORR r10,r10,#0x00130000 ; set length = 4, stride = 2
 FMXR FPSCR,r10

 VFPASSERT VECTOR<4:2> ; assert vector mode, length 4, stride 2
 fadds s8<4>, s0, s16<4> ; ERROR, wrong stride
 fabss s16<4:2>, s28<4:2> ; okay
 fadds s8<>, s2, s16<> ; okay (s8 and s16 both have
 ; length 4 and stride 2.
 ; s2 is scalar.)
6-38 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Chapter 7-
Directives Reference

This chapter describes the directives that are provided by the ARM assembler, armasm.
It contains the following sections:

• Alphabetical list of directives on page 7-2

• Symbol definition directives on page 7-3

• Data definition directives on page 7-12

Allocate memory, define data structures, set initial contents of memory.

• Assembly control directives on page 7-25

Conditional assembly, looping, inclusions, and macros.

• Frame description directives on page 7-31

• Reporting directives on page 7-42

• Miscellaneous directives on page 7-47.

Note

None of these directives are available in the inline assemblers in the ARM C and C++
compilers.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 7-1

Directives Reference
7.1 Alphabetical list of directives

Table 7-1 Location of descriptions of directives

ALIGN on page 7-48 EXPORT or GLOBAL on page 7-56 INFO on page 7-43

AREA on page 7-50 EXTERN on page 7-57 KEEP on page 7-61

ASSERT on page 7-42 FIELD on page 7-15 LCLA, LCLL, and LCLS on
page 7-5

CN on page 7-8 FN on page 7-11 LTORG on page 7-13

CODE16 and CODE32 on
page 7-52

FRAME ADDRESS on page 7-32 MACRO and MEND on page 7-26

CP on page 7-9 FRAME POP on page 7-33 MAP on page 7-14

DATA on page 7-24 FRAME PUSH on page 7-34 MEXIT on page 7-28

DCB on page 7-17 FRAME REGISTER on page 7-35 NOFP on page 7-62

DCD and DCDU on page 7-18 FRAME RESTORE on page 7-36 OPT on page 7-44

DCDO on page 7-19 FRAME SAVE on page 7-37 REQUIRE on page 7-62

DCFD and DCFDU on page 7-20 FRAME STATE REMEMBER on
page 7-38

RLIST on page 7-7

DCFS and DCFSU on page 7-21 FRAME STATE RESTORE on page 7-39 RN on page 7-64

DCI on page 7-22 FUNCTION or PROC on page 7-40 ROUT on page 7-65

DCQ and DCQU on page 7-23 GBLA, GBLL, and GBLS on page 7-4 SETA, SETL, and SETS on page 7-6

DCW and DCWU on page 7-24 GET or INCLUDE on page 7-58 DN and SN on page 7-10

DN and SN on page 7-10 GLOBAL on page 7-59 SPACE on page 7-16

END on page 7-53 IF, ELSE, and ENDIF on page 7-29 TTL and SUBT on page 7-46

ENDFUNC or ENDP on page 7-41 IMPORT on page 7-59 WHILE and WEND on page 7-30

ENTRY on page 7-54 INCBIN on page 7-60

EQU on page 7-55 INCLUDE on page 7-60
7-2 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Directives Reference
7.2 Symbol definition directives

This section describes the following directives:

• GBLA, GBLL, and GBLS on page 7-4

Declare a global arithmetic, logical, or string variable.

• LCLA, LCLL, and LCLS on page 7-5

Declare a local arithmetic, logical, or string variable.

• SETA, SETL, and SETS on page 7-6

Set the value of an arithmetic, logical, or string variable.

• RLIST on page 7-7

Define a name for a set of general-purpose registers.

• CN on page 7-8

Define a coprocessor register name.

• CP on page 7-9

Define a coprocessor name.

• DN and SN on page 7-10

Define a double-precision or single-precision VFP register name.

• FN on page 7-11

Define an FPA register name.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 7-3

Directives Reference
7.2.1 GBLA, GBLL, and GBLS

The GBLA directive declares a global arithmetic variable, and initializes its value to 0.

The GBLL directive declares a global logical variable, and initializes its value to {FALSE}.

The GBLS directive declares a global string variable and initializes its value to a null
string, "".

Syntax

<gblx> variable

where:

<gblx> is one of GBLA, GBLL, or GBLS.

variable is the name of the variable. variable must be unique amongst symbols
within a source file.

Usage

Using one of these directives for a variable that is already defined re-initializes the
variable to the same values given above.

The scope of the variable is limited to the source file that contains it.

Set the value of the variable with a SETA, SETL, or SETS directive (see SETA, SETL, and
SETS on page 7-6).

See LCLA, LCLL, and LCLS on page 7-5 for information on declaring local variables.

Global variables can also be set with the -predefine assembler command-line option.
See Command syntax on page 3-2 for more information.

Examples

 GBLA objectsize ; declare the variable name
objectsize SETA 0xff ; set its value
 SPACE objectsize ; quote the variable

 GBLL statusB
statusB SETL {TRUE}
7-4 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Directives Reference
7.2.2 LCLA, LCLL, and LCLS

The LCLA directive declares a local arithmetic variable, and initializes its value to 0.

The LCLL directive declares a local logical variable, and initializes its value to {FALSE}.

The LCLS directive declares a local string variable, and initializes its value to a null
string, "".

Syntax

<lclx> variable

where:

<lclx> is one of LCLA, LCLL, or LCLS.

variable is the name of the variable. variable must be unique within the macro that
contains it.

Usage

Using one of these directives for a variable that is already defined re-initializes the
variable to the same values given above.

The scope of the variable is limited to a particular instantiation of the macro that
contains it (see MACRO and MEND on page 7-26).

Set the value of the variable with a SETA, SETL, or SETS directive (see SETA, SETL, and
SETS on page 7-6).

See GBLA, GBLL, and GBLS on page 7-4 for information on declaring global variables.

Example

 MACRO ; Declare a macro
$label message $a ; Macro prototype line
 LCLS err ; Declare local string
 ; variable err.
err SETS "error no: " ; Set value of err
$label ; code
 INFO 0, "err":CC::STR:$a ; Use string
 MEND
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 7-5

Directives Reference
7.2.3 SETA, SETL, and SETS

The SETA directive sets the value of a local or global arithmetic variable.

The SETL directive sets the value of a local or global logical variable.

The SETS directive sets the value of a local or global string variable.

Syntax

variable <setx> expr

where:

<setx> is one of SETA, SETL, or SETS.

variable is the name of a variable declared by a GBLA, GBLL, GBLS, LCLA, LCLL, or LCLS
directive.

expr is an expression, which is:

• numeric, for SETA (see Numeric expressions on page 3-20)

• logical, for SETL (see Logical expressions on page 3-23)

• string, for SETS (see Logical expressions on page 3-23).

Usage

You must declare variable using a global or local declaration directive before using one
of these directives. See GBLA, GBLL, and GBLS on page 7-4 and LCLA, LCLL, and
LCLS on page 7-5 for more information.

You can also predefine variable names on the command line. See Command syntax on
page 3-2 for more information.

Examples

 GBLA VersionNumber
VersionNumber SETA 21

 GBLL Debug
Debug SETL {TRUE}

 GBLS VersionString
VersionString SETS "Version 1.0"
7-6 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Directives Reference
7.2.4 RLIST

The RLIST (register list) directive gives a name to a set of general-purpose registers.

Syntax

name RLIST {list-of-registers}

where:

name is the name to be given to the set of registers. name cannot be the same as
any of the predefined names listed in Predefined register and coprocessor
names on page 3-9.

list-of-registers

is a comma-delimited list of register names and/or register ranges. The
register list must be enclosed in braces.

Usage

Use RLIST to give a name to a set of registers to be transferred by the LDM or STM
instructions.

LDM and STM always put the lowest physical register numbers at the lowest address in
memory, regardless of the order they are supplied to the LDM or STM instruction. If you
have defined your own symbolic register names it can be less apparent that a register
list is not in increasing register order.

Use the -checkreglist assembler option to ensure that the registers in a register list are
supplied in increasing register order. If registers are not supplied in increasing register
order, a warning is issued.

Example

Context RLIST {r0-r6,r8,r10-r12,r15}
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 7-7

Directives Reference
7.2.5 CN

The CN directive defines a name for a coprocessor register.

Syntax

name CN expr

where:

name is the name to be defined for the coprocessor register. name cannot be the
same as any of the predefined names listed in Predefined register and
coprocessor names on page 3-9.

expr evaluates to a coprocessor register number from 0 to 15.

Usage

Use CN to allocate convenient names to registers, to help you remember what you use
each register for.

Note

Avoid conflicting uses of the same register under different names.

The names c0 to c15 are predefined.

Example

power CN 6 ; defines power as a symbol for
 ; coprocessor register 6
7-8 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Directives Reference
7.2.6 CP

The CP directive defines a name for a specified coprocessor. The coprocessor number
must be within the range 0 to 15.

Syntax

name CP expr

where:

name is the name to be assigned to the coprocessor. name cannot be the same as
any of the predefined names listed in Predefined register and coprocessor
names on page 3-9.

expr evaluates to a coprocessor number from 0 to 15.

Usage

Use CP to allocate convenient names to coprocessors, to help you to remember what you
use each one for.

Note

Avoid conflicting uses of the same coprocessor under different names.

The names p0 to p15 are predefined for coprocessors 0 to 15.

Example

dmu CP 6 ; defines dmu as a symbol for
 ; coprocessor 6
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 7-9

Directives Reference
7.2.7 DN and SN

The DN directive defines a name for a specified double-precision VFP register. The
names d0-d15 and D0-D15 are predefined.

The SN directive defines a name for a specified single-precision VFP register. The names
s0-s31 and S0-S31 are predefined.

Syntax

name DN expr

name SN expr

where:

name is the name to be assigned to the VFP register. name cannot be the same as
any of the predefined names listed in Predefined register and coprocessor
names on page 3-9.

expr evaluates to a double-precision VFP register number from 0 to 15, or a
single-precision VFP register number from 0 to 31 as appropriate.

Usage

Use DN or SN to allocate convenient names to VFP registers, to help you to remember
what you use each one for.

Note
Avoid conflicting uses of the same register under different names.

You cannot specify a vector length in a DN or SN directive (see VFP directives and vector
notation on page 6-35).

Examples

energy DN 6 ; defines energy as a symbol for
 ; VFP double-precision register 6

mass SN 16 ; defines mass as a symbol for
 ; VFP single-precision register 16
7-10 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Directives Reference
7.2.8 FN

The FN directive defines a name for a specified FPA floating-point register. The names
f0-f7 and F0-F7 are predefined.

Syntax

name FN expr

where:

name is the name to be assigned to the floating-point register. name cannot be
the same as any of the predefined names listed in Predefined register and
coprocessor names on page 3-9.

expr evaluates to a floating-point register number from 0 to 7.

Usage

Use FN to allocate convenient names to FPA floating-point registers, to help you to
remember what you use each one for.

Note

Avoid conflicting uses of the same register under different names.

Example

energy FN 6 ; defines energy as a symbol for
 ; floating-point register 6
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 7-11

Directives Reference
7.3 Data definition directives

This section describes the following directives:

• LTORG on page 7-13

Set an origin for a literal pool.

• MAP on page 7-14

Set the origin of a storage map.

• FIELD on page 7-15

Define a field within a storage map.

• SPACE on page 7-16

Allocate a zeroed block of memory.

• DCB on page 7-17

Allocate bytes of memory, and specify the initial contents.

• DCD and DCDU on page 7-18

Allocate words of memory, and specify the initial contents.

• DCDO on page 7-19

Allocate words of memory, and specify the initial contents as offsets from the
static base register.

• DCFD and DCFDU on page 7-20

Allocate double-words of memory, and specify the initial contents as
double-precision floating-point numbers.

• DCFS and DCFSU on page 7-21

Allocate words of memory, and specify the initial contents as single-precision
floating-point numbers.

• DCI on page 7-22

Allocate words of memory, and specify the initial contents. Mark the location as
code not data.

• DCQ and DCQU on page 7-23

Allocate double-words of memory, and specify the initial contents as 64-bit
integers.

• DCW and DCWU on page 7-24

Allocate half-words of memory, and specify the initial contents.

• DATA on page 7-24

Mark data within a code section. Obsolete, for backwards compatibility only.
7-12 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Directives Reference
7.3.1 LTORG

The LTORG directive instructs the assembler to assemble the current literal pool
immediately.

Syntax

LTORG

Usage

The assembler assembles the current literal pool at the end of every code section. The
end of a code section is determined by the AREA directive at the beginning of the
following section, or the end of the assembly.

These default literal pools can sometimes be out of range of some LDR, LDFD, and LDFS

pseudo-instructions. See LDR ARM pseudo-instruction on page 4-80 and LDR Thumb
pseudo-instruction on page 5-41 for more information. Use LTORG to ensure that a literal
pool is assembled within range. Large programs can require several literal pools.

Place LTORG directives after unconditional branches or subroutine return instructions so
that the processor does not attempt to execute the constants as instructions.

The assembler word-aligns data in literal pools.

Example

 AREA Example, CODE, READONLY
start BL func1

func1 ; function body
 ; code
 LDR r1,=0x55555555 ; => LDR R1, [pc, #offset to Literal Pool 1]
 ; code
 MOV pc,lr ; end function
 LTORG ; Literal Pool 1 contains literal &55555555.

data SPACE 4200 ; Clears 4200 bytes of memory,
 ; starting at current location.
 END ; Default literal pool is empty.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 7-13

Directives Reference
7.3.2 MAP

The MAP directive sets the origin of a storage map to a specified address. The
storage-map location counter, {VAR}, is set to the same address. ^ is a synonym for MAP.

Syntax

MAP expr{,base-register}

where:

expr is a numeric or program-relative expression:

• If base-register is not specified, expr evaluates to the address
where the storage map starts. The storage map location counter is
set to this address.

• If expr is program-relative, you must have defined the label before
you use it in the map. The map requires the definition of the label
during the first pass of the assembler.

base-register

specifies a register. If base-register is specified, the address where the
storage map starts is the sum of expr, and the value in base-register at
runtime.

Usage

Use the MAP directive in combination with the FIELD directive to describe a storage map.

Specify base-register to define register-relative labels. The base register becomes
implicit in all labels defined by following FIELD directives, until the next MAP directive.
The register-relative labels can be used in load and store instructions. See FIELD on
page 7-15 for an example.

The MAP directive can be used any number of times to define multiple storage maps.

The {VAR} counter is set to zero before the first MAP directive is used.

Examples

 MAP 0,r9
 MAP 0xff,r9
7-14 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Directives Reference
7.3.3 FIELD

The FIELD directive describes space within a storage map that has been defined using
the MAP directive. # is a synonym for FIELD.

Syntax

{label} FIELD expr

where:

label is an optional label. If specified, label is assigned the value of the storage
location counter, {VAR}. The storage location counter is then incremented
by the value of expr.

expr is an expression that evaluates to the number of bytes to increment the
storage counter.

Usage

If a storage map is set by a MAP directive that specifies a base-register, the base register
is implicit in all labels defined by following FIELD directives, until the next MAP directive.
These register-relative labels can be quoted in load and store instructions (see MAP on
page 7-14).

Note

You must be careful when using MAP, FIELD, and register-relative labels. See Describing
data structures with MAP and FIELD directives on page 2-50 for more information.

Example

The following example shows how register-relative labels are defined using the MAP and
FIELD directives.

 MAP 0,r9 ; set {VAR} to the address stored in r9
 FIELD 4 ; increment {VAR} by 4 bytes
Lab FIELD 4 ; set Lab to the address [r9 + 4]
 ; and then increment {VAR} by 4 bytes
 LDR r0,Lab ; equivalent to LDR r0,[r9,#4]
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 7-15

Directives Reference
7.3.4 SPACE

The SPACE directive reserves a zeroed block of memory. % is a synonym for SPACE.

Syntax

{label} SPACE expr

where:

expr evaluates to the number of zeroed bytes to reserve (see Numeric
expressions on page 3-20).

Usage

You must use a DATA directive if you use SPACE to define labeled data within Thumb code.
See DATA on page 7-24 for more information.

Use the ALIGN directive to align any code following a SPACE directive. See ALIGN on
page 7-48 for more information.

See also:

• DCB on page 7-17

• DCD and DCDU on page 7-18

• DCDO on page 7-19

• DCW and DCWU on page 7-24.

Example

 AREA MyData, DATA, READWRITE
data1 SPACE 255 ; defines 255 bytes of zeroed store
7-16 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Directives Reference
7.3.5 DCB

The DCB directive allocates one or more bytes of memory, and defines the initial runtime
contents of the memory. = is a synonym for DCB.

Syntax

{label} DCB expr{,expr}...

where:

expr is either:

• A numeric expression that evaluates to an integer in the range –128
to 255 (see Numeric expressions on page 3-20).

• A quoted string. The characters of the string are loaded into
consecutive bytes of store.

Usage

You must use the DATA directive if you use DCB to define labeled data within Thumb code.
See DATA on page 7-24 for more information.

If DCB is followed by an instruction, use an ALIGN directive to ensure that the instruction
is aligned. See ALIGN on page 7-48 for more information.

See also:

• DCD and DCDU on page 7-18

• DCQ and DCQU on page 7-23

• DCW and DCWU on page 7-24

• SPACE on page 7-16.

Example

Unlike C strings, ARM assembler strings are not null-terminated. You can construct a
null-terminated C string using DCB as follows:

C_string DCB "C_string",0
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 7-17

Directives Reference
7.3.6 DCD and DCDU

The DCD directive allocates one or more words of memory, aligned on 4-byte boundaries,
and defines the initial runtime contents of the memory.

& is a synonym for DCD.

DCDU is the same, except that the memory alignment is arbitrary.

Syntax

{label} DCD{U} expr{,expr}

where:

expr is either:

• a numeric expression (see Numeric expressions on page 3-20).

• a program-relative expression.

Usage

DCD inserts up to 3 bytes of padding before the first defined word, if necessary, to achieve
4-byte alignment.

Use DCDU if you do not require alignment.

See also:

• DCB on page 7-17

• DCW and DCWU on page 7-24

• DCQ and DCQU on page 7-23

• SPACE on page 7-16.

Examples

data1 DCD 1,5,20 ; Defines 3 words containing
 ; decimal values 1, 5, and 20

data2 DCD mem06 + 4 ; Defines 1 word containing 4 +
 ; the address of the label mem06

 AREA MyData, DATA, READWRITE
 DCB 255 ; Now misaligned ...
data3 DCDU 1,5,20 ; Defines 3 words containing
 ; 1, 5 and 20, not word aligned
7-18 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Directives Reference
7.3.7 DCDO

The DCDO directive allocates one or more words of memory, aligned on 4-byte
boundaries, and defines the initial runtime contents of the memory as an offset from the
static base register, sb (r9).

Syntax

{label} DCDO expr{,expr}...

where:

expr is a register-relative expression or label. The base register must be sb.

Usage

Use DCDO to allocate space in memory for static base register relative relocatable
addresses.

Example

 IMPORT externsym
 DCDO externsym ; 32-bit word relocated by offset of
 ; externsym from base of SB section.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 7-19

Directives Reference
7.3.8 DCFD and DCFDU

The DCFD directive allocates memory for word-aligned double-precision floating-point
numbers, and defines the initial runtime contents of the memory. Double-precision
numbers occupy two words and must be word aligned to be used in arithmetic
operations.

DCDFU is the same, except that the memory alignment is arbitrary.

Syntax

{label} DCFD{U} fpliteral{,fpliteral}...

where:

fpliteral is a double-precision floating-point literal (see Floating-point literals on
page 3-22).

Usage

The assembler inserts up to three bytes of padding before the first defined number, if
necessary, to achieve 4-byte alignment.

Use DCFDU if you do not require alignment.

The word order used when converting fpliteral to internal form is controlled by the
floating-point architecture selected. You cannot use DCFD or DCFDU if you select the -fpu

none option.

The range for double-precision numbers is:

• maximum 1.79769313486231571e+308

• minimum 2.22507385850720138e–308.

See also DCFS and DCFSU on page 7-21.

Examples

 DCFD 1E308,-4E-100
 DCFDU 10000,-.1,3.1E26
7-20 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Directives Reference
7.3.9 DCFS and DCFSU

The DCFS directive allocates memory for word-aligned single-precision floating-point
numbers, and defines the initial runtime contents of the memory. Single-precision
numbers occupy one word and must be word aligned to be used in arithmetic operations.

DCDSU is the same, except that the memory alignment is arbitrary.

Syntax

{label} DCFS{U} fpliteral{,fpliteral}...

where:

fpliteral is a single-precision floating-point literal (see Floating-point literals on
page 3-22).

Usage

DCFS inserts up to three bytes of padding before the first defined number, if necessary to
achieve 4-byte alignment.

Use DCFSU if you do not require alignment.

The range for single-precision values is:

• maximum 3.40282347e+38

• minimum 1.17549435e–38.

See also DCFD and DCFDU on page 7-20.

Example

 DCFS 1E3,-4E-9
 DCFSU 1.0,-.1,3.1E6
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 7-21

Directives Reference
7.3.10 DCI

In ARM code, the DCI directive allocates one or more words of memory, aligned on
4-byte boundaries, and defines the initial runtime contents of the memory.

In Thumb code, the DCI directive allocates one or more halfwords of memory, aligned
on 2-byte boundaries, and defines the initial runtime contents of the memory.

Syntax

{label} DCI expr{,expr}

where:

expr is a numeric expression (see Numeric expressions on page 3-20).

Usage

The DCI directive is very like the DCD or DCW directives, but the location is marked as code
instead of data. Use DCI when writing macros for new instructions not supported by the
version of the assembler you are using.

In ARM code, DCI inserts up to three bytes of padding before the first defined word, if
necessary, to achieve 4-byte alignment. In Thumb code, DCI inserts an initial byte of
padding, if necessary, to achieve 2-byte alignment.

See also DCD and DCDU on page 7-18 and DCW and DCWU on page 7-24.

Example

 MACRO ; this macro translates newinstr Rd,Rm
 ; to the appropriate machine code
 newinst $Rd,$Rm
 DCI 0xe16f0f10 :OR: ($Rd:SHL:12) :OR: $Rm
 MEND
7-22 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Directives Reference
7.3.11 DCQ and DCQU

The DCQ directive allocates one or more 8-byte blocks of memory, aligned on 4-byte
boundaries, and defines the initial runtime contents of the memory.

DCQU is the same, except that the memory alignment is arbitrary.

Syntax

{label} DCQ{U} {-}literal{,{-}literal}...

where:

literal is a 64-bit numeric literal (see Numeric literals on page 3-21).

The range of numbers allowed is 0 to 264 – 1.

In addition to the characters normally allowed in a numeric literal, you
can prefix literal with a minus sign. In this case, the range of numbers
allowed is –263 to –1.

The result of specifying -n is the same as the result of specifying 264 – n.

Usage

DCQ inserts up to 3 bytes of padding before the first defined 8-byte block, if necessary,
to achieve 4-byte alignment.

Use DCQU if you do not require alignment.

See also:

• DCB on page 7-17

• DCD and DCDU on page 7-18

• DCW and DCWU on page 7-24

• SPACE on page 7-16.

Example

 AREA MiscData, DATA, READWRITE
data DCQ -225,2_101 ; 2_101 means binary 101.
 DCQU number+4 ; number must already be defined.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 7-23

Directives Reference
7.3.12 DCW and DCWU

The DCW directive allocates one or more halfwords of memory, aligned on 2-byte
boundaries, and defines the initial runtime contents of the memory.

DCWU is the same, except that the memory alignment is arbitrary.

Syntax

{label} DCW expr{,expr}...

where:

expr is a numeric expression that evaluates to an integer in the range –32768
to 65535 (see Numeric expressions on page 3-20).

Usage

DCW inserts a byte of padding before the first defined halfword if necessary to achieve
2-byte alignment.

Use DCWU if you do not require alignment.

See also:

• DCB on page 7-17

• DCD and DCDU on page 7-18

• DCQ and DCQU on page 7-23

• SPACE on page 7-16.

Example

data DCW -225,2*number ; number must already be defined

 DCWU number+4

7.3.13 DATA

The DATA directive is no longer needed. It is ignored by the assembler.
7-24 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Directives Reference
7.4 Assembly control directives

This section describes the following directives:

• MACRO and MEND on page 7-26

• MEXIT on page 7-28

• IF, ELSE, and ENDIF on page 7-29

• WHILE and WEND on page 7-30.

7.4.1 Nesting directives

The following structures can be nested to a total depth of 256:

• MACRO definitions

• WHILE...WEND loops

• IF...ELSE...ENDIF conditional structures

• INCLUDE file inclusions.

The limit applies to all structures taken together, however they are nested. The limit is
not 256 of each type of structure.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 7-25

Directives Reference
7.4.2 MACRO and MEND

The MACRO directive marks the start of the definition of a macro. Macro expansion
terminates at the MEND directive. See Using macros on page 2-47 for further information.

Syntax

Two directives are used to define a macro. The syntax is:

 MACRO
{$label} macroname {$parameter{,$parameter}...}
 ; code
 MEND

where:

$label is a parameter that is substituted with a symbol given when the
macro is invoked. The symbol is usually a label.

macroname is the name of the macro. It must not begin with an instruction or
directive name.

$parameter is a parameter that is substituted when the macro is invoked. A
default value for a parameter can be set using this format:

$parameter="default value"

Double quotes must be used if there are any spaces within, or at
either end of, the default value.

Usage

If you start any WHILE...WEND loops or IF...ENDIF conditions within a macro, they must
be closed before the MEND directive is reached. See MEXIT on page 7-28 if you need to
allow an early exit from a macro, for example from within a loop.

Within the macro body, parameters such as $label, $parameter can be used in the same
way as other variables (see Assembly time substitution of variables on page 3-14). They
are given new values each time the macro is invoked. Parameters must begin with $ to
distinguish them from ordinary symbols. Any number of parameters can be used.

$label is optional. It is useful if the macro defines internal labels. It is treated as a
parameter to the macro. It does not necessarily represent the first instruction in the
macro expansion. The macro defines the locations of any labels.

Use | as the argument to use the default value of a parameter. An empty string is used
if the argument is omitted.
7-26 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Directives Reference
In a macro that uses several internal labels, it is useful to define each internal label as
the base label with a different suffix.

Use a dot between a parameter and following text, or a following parameter, if a space
is not required in the expansion. Do not use a dot between preceding text and a
parameter.

Macros define the scope of local variables (see LCLA, LCLL, and LCLS on page 7-5).

Macros can be nested (see Nesting directives on page 7-25).

Examples

 ; macro definition

 MACRO ; start macro definition
$label xmac $p1,$p2
 ; code
$label.loop1 ; code
 ; code
 BGE $label.loop1
$label.loop2 ; code
 BL $p1
 BGT $label.loop2
 ; code
 ADR $p2
 ; code
 MEND ; end macro definition

 ; macro invocation

abc xmac subr1,de ; invoke macro
 ; code ; this is what is
abcloop1 ; code ; is produced when
 ; code ; the xmac macro is
 BGE abcloop1 ; expanded
abcloop2 ; code
 BL subr1
 BGT abcloop2
 ; code
 ADR de
 ; code
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 7-27

Directives Reference
Using a macro to produce assembly-time diagnostics:

 MACRO ; Macro definition
 diagnose $param1="default" ; This macro produces
 INFO 0,"$param1" ; assembly-time diagnostics
 MEND ; (on second assembly pass)

 ; macro expansion

 diagnose ; Prints blank line at assembly-time
 diagnose "hello" ; Prints "hello" at assembly-time
 diagnose | ; Prints "default" at assembly-time

7.4.3 MEXIT

The MEXIT directive is used to exit a macro definition before the end.

Usage

Use MEXIT when you need an exit from within the body of a macro. Any unclosed
WHILE...WEND loops or IF...ENDIF conditions within the body of the macro are closed by
the assembler before the macro is exited.

See also MACRO and MEND on page 7-26.

Example

 MACRO
$abc macro abc $param1,$param2
 ; code
 WHILE condition1
 ; code
 IF condition2
 ; code
 MEXIT
 ELSE
 ; code
 ENDIF
 WEND
 ; code
 MEND
7-28 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Directives Reference
7.4.4 IF, ELSE, and ENDIF

The IF directive introduces a condition that is used to decide whether to assemble a
sequence of instructions and/or directives. [is a synonym for IF.

The ELSE directive marks the beginning of a sequence of instructions and/or directives
that are to be assembled if the preceding condition fails. | is a synonym for ELSE.

The ENDIF directive marks the end of a sequence of instructions and/or directives that
are to be conditionally assembled.] is a synonym for ENDIF.

Syntax

IF logical-expression

 ...

{ELSE

 ...}

ENDIF

where:

logical-expression

is an expression that evaluates to either {TRUE} or {FALSE}.

See Relational operators on page 3-29.

Usage

Use IF with ENDIF, and optionally with ELSE, for sequences of instructions and/or
directives that are only to be assembled or acted on under a specified condition.

IF...ENDIF conditions can be nested (see Nesting directives on page 7-25).

Example

 IF Version = "1.0"
 ; code and/or
 ; directives
 ELSE
 ; code and/or
 ; directives
 ENDIF
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 7-29

Directives Reference
7.4.5 WHILE and WEND

The WHILE directive starts a sequence of instructions or directives that are to be
assembled repeatedly. The sequence is terminated with a WEND directive.

Syntax

WHILE logical-expression

code

WEND

where:

logical-expression

is an expression that can evaluate to either {TRUE} or {FALSE} (see Logical
expressions on page 3-23).

Usage

Use the WHILE directive, together with the WEND directive, to assemble a sequence of
instructions a number of times. The number of repetitions can be zero.

You can use IF...ENDIF conditions within WHILE...WEND loops.

WHILE...WEND loops can be nested (see Nesting directives on page 7-25).

Example

count SETA 1 ; you are not restricted to
 WHILE count <= 4 ; such simple conditions
count SETA count+1 ; In this case,
 ; code ; this code will be
 ; code ; repeated four times
 WEND
7-30 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Directives Reference
7.5 Frame description directives

This section describes the following directives:

• FRAME ADDRESS on page 7-32

• FRAME POP on page 7-33

• FRAME PUSH on page 7-34

• FRAME REGISTER on page 7-35

• FRAME RESTORE on page 7-36

• FRAME SAVE on page 7-37

• FRAME STATE REMEMBER on page 7-38

• FRAME STATE RESTORE on page 7-39

• FUNCTION or PROC on page 7-40

• ENDFUNC or ENDP on page 7-41.

Correct use of these directives:

• help you to avoid errors in function construction, particularly when you are
modifying existing code

• allow the assembler to alert you to errors in function construction

• enable backtracing of function calls during debugging.

In DWARF 2, the canonical frame address is an address on the stack specifying where
the call frame of an interrupted function is located.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 7-31

Directives Reference
7.5.1 FRAME ADDRESS

The FRAME ADDRESS directive describes how to calculate the canonical frame address for
following instructions. You can only use it in functions with FUNCTION and ENDFUNC or
PROC and ENDP directives.

Syntax

FRAME ADDRESS reg[,offset]

where:

reg is the register on which the canonical frame address is to be based. This
is sp unless the function uses a separate frame pointer.

offset is the offset of the canonical frame address from reg. If offset is zero, you
can omit it.

Usage

Use FRAME ADDRESS if your code alters which register the canonical frame address is
based on, or if it alters the offset of the canonical frame address from the register. You
must use FRAME ADDRESS immediately after the instruction which changes the calculation
of the canonical frame address.

Note

If your code uses a single instruction to save registers and alter the stack pointer, you
can use FRAME PUSH instead of using both FRAME ADDRESS and FRAME SAVE (see FRAME
PUSH on page 7-34).

If your code uses a single instruction to load registers and alter the stack pointer, you
can use FRAME POP instead of using both FRAME ADDRESS and FRAME RESTORE (see FRAME
POP on page 7-33).

Example

_fn FUNCTION ; CFA (Canonical Frame Address) is value
 ; of sp on entry to function
 STMFD sp!, {r4,fp,ip,lr,pc}
 FRAME PUSH {r4,fp,ip,lr,pc}
 SUB sp,sp,#4 ; CFA offset now changed
 FRAME ADDRESS sp,24 ; - so we correct it
 ADD fp,sp,#20
 FRAME ADDRESS fp,4 ; New base register
 ; code using fp to base call-frame on, instead of sp
7-32 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Directives Reference
7.5.2 FRAME POP

Use the FRAME POP directive to inform the assembler when the callee reloads registers.
You can only use it within functions with FUNCTION and ENDFUNC or PROC and ENDP

directives.

You need not do this after the last instruction in a function.

Syntax

There are two alternative syntaxes for FRAME POP:

FRAME POP {reglist}

FRAME POP n

where:

reglist is a list of registers restored to the values they had on entry to the
function. There must be at least one register in the list.

n is the number of bytes that the stack pointer moves.

Usage

FRAME POP is equivalent to a FRAME ADDRESS and a FRAME RESTORE directive. You can use it
when a single instruction loads registers and alters the stack pointer.

You must use FRAME POP immediately after the instruction it refers to.

The assembler calculates the new offset for the canonical frame address. It assumes
that:

• each ARM register popped occupied 4 bytes on the stack

• each FPA floating-point register popped occupied 12 bytes on the stack

• each VFP single-precision register popped occupied 4 bytes on the stack, plus an
extra 4-byte word for each list.

See FRAME ADDRESS on page 7-32 and FRAME RESTORE on page 7-36.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 7-33

Directives Reference
7.5.3 FRAME PUSH

Use the FRAME PUSH directive to inform the assembler when the callee saves registers,
normally at function entry. You can only use it within functions with FUNCTION and
ENDFUNC or PROC and ENDP directives.

Syntax

There are two alternative syntaxes for FRAME PUSH:

FRAME PUSH {reglist}

FRAME PUSH n

where:

reglist is a list of registers stored consecutively below the canonical frame
address. There must be at least one register in the list.

n is the number of bytes that the stack pointer moves.

Usage

FRAME PUSH is equivalent to a FRAME ADDRESS and a FRAME SAVE directive. You can use it
when a single instruction saves registers and alters the stack pointer.

You must use FRAME PUSH immediately after the instruction it refers to.

The assembler calculates the new offset for the canonical frame address. It assumes
that:

• each ARM register pushed occupies 4 bytes on the stack

• each FPA floating-point register pushed occupies 12 bytes on the stack

• each VFP single-precision register pushed occupies 4 bytes on the stack, plus an
extra 4-byte word for each list.

See FRAME ADDRESS on page 7-32 and FRAME SAVE on page 7-37.
7-34 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Directives Reference
Example

p PROC ; Canonical frame address is sp + 0
 EXPORT p
 STMFD sp!,{r4-r6,lr}
 ; sp has moved relative to the canonical frame address,
 ; and registers r4, r5, r6 and lr are now on the stack
 FRAME PUSH {r4-r6,lr}
 ; Equivalent to:
 ; FRAME ADDRESS sp,16 ; 16 bytes in {r4-r6,lr}
 ; FRAME SAVE {r4-r6,lr},-16

7.5.4 FRAME REGISTER

Use the FRAME REGISTER directive to maintain a record of the locations of function
arguments held in registers. You can only use it within functions with FUNCTION and
ENDFUNC or PROC and ENDP directives.

Syntax

FRAME REGISTER reg1,reg2

where:

reg1 is the register that held the argument on entry to the function.

reg2 is the register in which the value is preserved.

Usage

Use the FRAME REGISTER directive when you use a register to preserve an argument that
was held in a different register on entry to a function.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 7-35

Directives Reference
7.5.5 FRAME RESTORE

Use the FRAME RESTORE directive to inform the assembler that the contents of specified
registers have been restored to the values they had on entry to the function. You can only
use it within functions with FUNCTION and ENDFUNC or PROC and ENDP directives.

Syntax

FRAME RESTORE {reglist}

where:

reglist is a list of registers whose contents have been restored. There must be at
least one register in the list.

Usage

Use FRAME RESTORE immediately after the callee reloads registers from the stack. You
need not do this after the last instruction in a function.

reglist can contain integer registers or floating-point registers, but not both.

Note

If your code uses a single instruction to load registers and alter the stack pointer, you
can use FRAME POP instead of using both FRAME RESTORE and FRAME ADDRESS (see FRAME
POP on page 7-33).
7-36 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Directives Reference
7.5.6 FRAME SAVE

The FRAME SAVE directive describes the location of saved register contents relative to the
canonical frame address. You can only use it within functions with FUNCTION and ENDFUNC

or PROC and ENDP directives.

Syntax

FRAME SAVE {reglist}, offset

where:

reglist is a list of registers stored consecutively starting at offset from the
canonical frame address. There must be at least one register in the list.

Usage

Use FRAME SAVE immediately after the callee stores registers onto the stack.

reglist can include registers which are not required for backtracing. The assembler
determines which registers it needs to record in the DWARF call frame information.

Note

If your code uses a single instruction to save registers and alter the stack pointer, you
can use FRAME PUSH instead of using both FRAME SAVE and FRAME ADDRESS (see FRAME
PUSH on page 7-34).
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 7-37

Directives Reference
7.5.7 FRAME STATE REMEMBER

The FRAME STATE REMEMBER directive saves the current information on how to calculate
the canonical frame address and locations of saved register values. You can only use it
within functions with FUNCTION and ENDFUNC or PROC and ENDP directives.

Syntax

FRAME STATE REMEMBER

Usage

During an inline exit sequence the information about calculation of canonical frame
address and locations of saved register values can change. After the exit sequence
another branch can continue using the same information as before. Use FRAME STATE

REMEMBER to preserve this information, and FRAME STATE RESTORE to restore it.

These directives can be nested. Each FRAME STATE RESTORE directive must have a
corresponding FRAME STATE REMEMBER directive. See:

• FRAME STATE RESTORE on page 7-39

• FUNCTION or PROC on page 7-40.

Example

 ; function code
 FRAME STATE REMEMBER
 ; save frame state before in-line exit sequence
 LDMFD sp!,{r4-r6,pc}
 ; no need to FRAME POP here, as control has
 ; transferred out of the function
 FRAME STATE RESTORE
 ; end of exit sequence, so restore state
exitB ; code for exitB
 LDMFD sp!,{r4-r6,pc}
 ENDP
7-38 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Directives Reference
7.5.8 FRAME STATE RESTORE

The FRAME STATE RESTORE directive restores information about how to calculate the
canonical frame address and locations of saved register values. You can only use it
within functions with FUNCTION and ENDFUNC or PROC and ENDP directives.

Syntax

FRAME STATE RESTORE

Usage

See:

• FRAME STATE REMEMBER on page 7-38

• FUNCTION or PROC on page 7-40.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 7-39

Directives Reference
7.5.9 FUNCTION or PROC

The FUNCTION directive marks the start of an ATPCS-conforming function. PROC is a
synonym for FUNCTION.

Syntax

label FUNCTION

Usage

Use FUNCTION to mark the start of functions. The assembler uses FUNCTION to identify the
start of a function when producing DWARF call frame information for ELF.

FUNCTION sets the canonical frame address to be sp, and the frame state stack to be empty.

Each FUNCTION directive must have a matching ENDFUNC directive. You must not nest
FUNCTION/ENDFUNC pairs, and they must not contain PROC or ENDP directives.

See also FRAME ADDRESS on page 7-32 to FRAME STATE RESTORE on page 7-39.

Example

dadd FUNCTION
 EXPORT dadd
 STMFD sp!,{r4-r6,lr}
 FRAME PUSH {r4-r6,lr}
 ; subroutine body
 LDMFD sp!,{r4-r6,pc}
 ENDFUNC
7-40 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Directives Reference
7.5.10 ENDFUNC or ENDP

The ENDFUNC directive marks the end of an ATPCS-conforming function (see
FUNCTION or PROC on page 7-40). ENDP is a synonym for ENDFUNC.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 7-41

Directives Reference
7.6 Reporting directives

This section describes the following directives:

• ASSERT on this page

generates an error message if an assertion is false during assembly.

• INFO on page 7-43

generates diagnostic information during assembly.

• OPT on page 7-44

sets listing options.

• TTL and SUBT on page 7-46

insert titles and subtitles in listings.

7.6.1 ASSERT

The ASSERT directive generates an error message during the second pass of the assembly
if a given assertion is false.

Syntax

ASSERT logical-expression

where:

logical-expression

is an assertion that can evaluate to either {TRUE} or {FALSE}.

Usage

Use ASSERT to ensure that any necessary condition is met during assembly.

If the assertion is false an error message is generated and assembly fails.

See also INFO on page 7-43.

Example

 ASSERT label1 <= label2 ; Tests if the address
 ; represented by label1
 ; is <= the address
 ; represented by label2.
7-42 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Directives Reference
7.6.2 INFO

The INFO directive supports diagnostic generation on either pass of the assembly.

! is very similar to INFO, but has less detailed reporting.

Syntax

INFO numeric-expression, string-expression

where:

numeric-expression

is a numeric expression that is evaluated during assembly. If the
expression evaluates to zero:

• no action is taken during pass one

• string-expression is printed during pass two.

If the expression does not evaluate to zero, string-expression is printed
as an error message and the assembly fails.

string-expression

is an expression that evaluates to a string.

Usage

INFO provides a flexible means for creating custom error messages. See Numeric
expressions on page 3-20 and String expressions on page 3-19 for additional
information on numeric and string expressions.

See also ASSERT on page 7-42.

Examples

 INFO 0, "Version 1.0"

 IF endofdata <= label1
 INFO 4, "Data overrun at label1"
 ENDIF
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 7-43

Directives Reference
7.6.3 OPT

The OPT directive sets listing options from within the source code.

Syntax

OPT n

where:

n is the OPT directive setting. Table 7-2 lists valid settings.

Usage

Specify the -list assembler option to turn on listing.

Table 7-2 OPT directive settings

OPT n Effect

1 Turns on normal listing.

2 Turns off normal listing.

4 Page throw. Issues an immediate form feed and starts a new page.

8 Resets the line number counter to zero.

16 Turns on listing for SET, GBL and LCL directives.

32 Turns off listing for SET, GBL and LCL directives.

64 Turns on listing of macro expansions.

128 Turns off listing of macro expansions.

256 Turns on listing of macro invocations.

512 Turns off listing of macro invocations.

1024 Turns on the first pass listing.

2048 Turns off the first pass listing.

4096 Turns on listing of conditional directives.

8192 Turns off listing of conditional directives.

16384 Turns on listing of MEND directives.

32768 Turns off listing of MEND directives.
7-44 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Directives Reference
By default the -list option produces a normal listing that includes variable
declarations, macro expansions, call-conditioned directives, and MEND directives. The
listing is produced on the second pass only. Use the OPT directive to modify the default
listing options from within your code. See Command syntax on page 3-2 for
information on the -list option.

You can use OPT to format code listings. For example, you can specify a new page before
functions and sections.

Example

 AREA Example, CODE, READONLY
start ; code
 ; code
 BL func1
 ; code
 OPT 4 ; places a page break before func1
func1 ; code
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 7-45

Directives Reference
7.6.4 TTL and SUBT

The TTL directive inserts a title at the start of each page of a listing file. The title is
printed on each page until a new TTL directive is issued.

The SUBT directive places a subtitle on the pages of a listing file. The subtitle is printed
on each page until a new SUBT directive is issued.

Syntax

TTL title

SUBT subtitle

where:

title is the title

subtitle is the subtitle.

Usage

Use the TTL directive to place a title at the top of the pages of a listing file. If you want
the title to appear on the first page, the TTL directive must be on the first line of the
source file.

Use additional TTL directives to change the title. Each new TTL directive takes effect
from the top of the next page.

Use SUBT to place a subtitle at the top of the pages of a listing file. Subtitles appear in
the line below the titles. If you want the subtitle to appear on the first page, the SUBT

directive must be on the first line of the source file.

Use additional SUBT directives to change subtitles. Each new SUBT directive takes effect
from the top of the next page.

Example

 TTL First Title ; places a title on the first
 ; and subsequent pages of a
 ; listing file.
 SUBT First Subtitle ; places a subtitle on the
 ; second and subsequent pages
 ; of a listing file.
7-46 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Directives Reference
7.7 Miscellaneous directives

This section describes the following directives:

• ALIGN on page 7-48

• AREA on page 7-50

• CODE16 and CODE32 on page 7-52

• END on page 7-53

• ENTRY on page 7-54

• EQU on page 7-55

• EXPORT or GLOBAL on page 7-56

• EXTERN on page 7-57

• GET or INCLUDE on page 7-58

• GLOBAL on page 7-59

• IMPORT on page 7-59

• INCBIN on page 7-60

• INCLUDE on page 7-60

• KEEP on page 7-61

• NOFP on page 7-62

• REQUIRE on page 7-62

• REQUIRE8 and PRESERVE8 on page 7-63

• RN on page 7-64

• ROUT on page 7-65.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 7-47

Directives Reference
7.7.1 ALIGN

The ALIGN directive aligns the current location to a specified boundary by padding with
zeroes.

Syntax

ALIGN {expr{,offset}}

where:

expr is a numeric expression evaluating to any power of 2 from 20 to 231.

offset can be any numeric expression.

The current location is aligned to the next address of the form:

offset + n * expr

If expr is not specified, ALIGN sets the current location to the next word (four byte)
boundary.

Usage

Use ALIGN to ensure that your data and code is aligned to appropriate boundaries. This
is typically required in the following circumstances:

• The ADR Thumb pseudo-instruction can only load addresses that are word aligned,
but a label within Thumb code might not be word aligned. Use ALIGN 4 to ensure
4-byte alignment of an address within Thumb code.

• Use ALIGN to take advantage of caches on some ARM processors. For example,
the ARM940T has a cache with 16-byte lines. Use ALIGN 16 to align function
entries on 16-byte boundaries and maximize the efficiency of the cache.

• LDRD and STRD double-word data transfers must be 8-byte aligned. Use ALIGN 8

before memory allocation directives such as DCQ (see Data definition directives on
page 7-12) if the data is to be accessed using LDRD or STRD.

• A label on a line by itself can be arbitrarily aligned. Following ARM code is
word-aligned (Thumb code is half-word aligned). The label therefore does not
address the code correctly. Use ALIGN 4 (or ALIGN 2 for Thumb) before the label.

Alignment is relative to the start of the ELF section where the routine is located. The
section must be aligned to the same, or coarser, boundaries. The ALIGN attribute on the
AREA directive is specified differently (see AREA on page 7-50 and the example below).
7-48 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Directives Reference
Examples

 AREA cacheable, CODE, ALIGN=3
rout1 ; code ; aligned on 8-byte boundary
 ; code
 MOV pc,lr ; aligned only on 4-byte boundary
 ALIGN 8 ; now aligned on 8-byte boundary
rout2 ; code

 AREA OffsetExample, CODE
 DCB 1 ; This example places the two
 ALIGN 4,3 ; bytes in the first and fourth
 DCB 1 ; bytes of the same word.

 AREA Example, CODE, READONLY
start LDR r6,=label1
 ; code
 MOV pc,lr
label1 DCB 1 ; pc now misaligned
 ALIGN ; ensures that subroutine1 addresses
subroutine1 ; the following instruction.
 MOV r5,#0x5
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 7-49

Directives Reference
7.7.2 AREA

The AREA directive instructs the assembler to assemble a new code or data section.
Sections are independent, named, indivisible chunks of code or data that are
manipulated by the linker. See ELF sections and the AREA directive on page 2-15 for
more information.

Syntax

AREA sectionname{,attr}{,attr}...

where:

sectionname is the name that the section is to be given.

You can choose any name for your sections. However, names starting
with a digit must be enclosed in bars or a missing section name error is
generated. For example, |1_DataArea|.

Certain names are conventional. For example, |.text| is used for code
sections produced by the C compiler, or for code sections otherwise
associated with the C library.

attr are one or more comma-delimited section attributes. Valid attributes are:

ALIGN=expression

By default, ELF sections are aligned on a 4-byte boundary.

expression can have any integer value from 2 to 31. The
section is aligned on a 2expression-byte boundary. For example,
if expression is 10, the section is aligned on a 1KB boundary.
This is not the same as the way that the ALIGN directive is
specified. See ALIGN on page 7-48.

ASSOC=section

section specifies an associated ELF section. sectionname must
be included in any link that includes section.

CODE Contains machine instructions. READONLY is the default.

COMDEF Is a common section definition. This ELF section can contain
code or data. It must be identical to any other section of the
same name in other source files.

Identical ELF sections with the same name are overlaid in the
same section of memory by the linker. If any are different, the
linker generates a warning and does not overlay the sections.
See the Linker chapter in ADS Compiler, Linker, and Utilities
Guide.
7-50 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Directives Reference
COMMON Is a common data section. You must not define any code or
data in it. It is initialized to zeroes by the linker. All common
sections with the same name are overlaid in the same section
of memory by the linker. They do not all need to be the same
size. The linker allocates as much space as is required by the
largest common section of each name.

DATA Contains data, not instructions. READWRITE is the default.

NOINIT Indicates that the data section is uninitialized, or initialized to
zero. It contains only space reservation directives (DCB, DCD,
DCDU, DCQ, DCQU, DCW, DCWU, or SPACE), with no initialized values.
You can decide at link time whether an AREA is uninitialized or
zero-initialized (see the Linker chapter in ADS Compiler,
Linker, and Utilities Guide).

READONLY Indicates that this section should not be written to. This is the
default for Code areas.

READWRITE Indicates that this section can be read from and written to. This
is the default for Data areas.

Usage

Use the AREA directive to subdivide your source file into ELF sections. You can use the
same name in more than one AREA directive. All areas with the same name are placed in
the same ELF section.

You should normally use separate ELF sections for code and data. Large programs can
usually be conveniently divided into several code sections. Large independent data sets
are also usually best placed in separate sections.

The scope of local labels is defined by AREA directives, optionally subdivided by ROUT

directives (see Local labels on page 3-16 and ROUT on page 7-65).

There must be at least one AREA directive for an assembly.

Example

The following example defines a read-only code section named Example.

 AREA Example,CODE,READONLY ; An example code section.
 ; code
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 7-51

Directives Reference
7.7.3 CODE16 and CODE32

The CODE16 directive instructs the assembler to interpret subsequent instructions as
16-bit Thumb instructions.

The CODE32 directive instructs the assembler to interpret subsequent instructions as
32-bit ARM instructions.

Syntax

CODE16

CODE32

Usage

In files that contain a mixture of ARM and Thumb code:

• use CODE16 when changing from ARM state to Thumb state. CODE16 must precede
any Thumb code

• use CODE32 when changing from Thumb state to ARM state. CODE32 must precede
any ARM code.

CODE16 and CODE32 do not assemble to instructions that changes the state. They only
instruct the assembler to assemble Thumb or ARM instructions as appropriate.

Example

This example shows how CODE16 can be used to branch from ARM to Thumb
instructions.

 AREA ChangeState, CODE, READONLY
 CODE32

 ; This section starts in ARM state
 LDR r0,=start+1 ; Load the address and set the
 ; least significant bit
 BX r0 ; Branch and exchange
 ; instruction sets

 ; Not necessarily in same section

 CODE16 ; Following instructions are Thumb
start MOV r1,#10 ; Thumb instructions
7-52 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Directives Reference
7.7.4 END

The END directive informs the assembler that it has reached the end of a source file.

Syntax

END

Usage

Every assembly language source file must end with END on a line by itself.

If the source file has been included in a parent file by a GET directive, the assembler
returns to the parent file and continues assembly at the first line following the GET

directive. See GET or INCLUDE on page 7-58 for more information.

If END is reached in the top-level source file during the first pass without any errors, the
second pass begins.

If END is reached in the top-level source file during the second pass, the assembler
finishes the assembly and writes the appropriate output.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 7-53

Directives Reference
7.7.5 ENTRY

The ENTRY directive declares an entry point to a program.

Syntax

ENTRY

Usage

You must specify at least one ENTRY point for a program. If no ENTRY exists, a warning is
generated at link time.

You must not use more than one ENTRY directive in a single source file. Not every source
file has to have an ENTRY directive. If more than one ENTRY exists in a single source file,
an error message is generated at assembly time.

Example

 AREA ARMex, CODE, READONLY
 ENTRY ; Entry point for the application
7-54 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Directives Reference
7.7.6 EQU

The EQU directive gives a symbolic name to a numeric constant, a register-relative value
or a program-relative value. * is a synonym for EQU.

Syntax

name EQU expr{, type}

where:

name is the symbolic name to assign to the value.

expr is a register-relative address, a program-relative address, an absolute
address, or a 32-bit integer constant.

type is optional. type can be any one of:

• CODE16

• CODE32

• DATA

You can use type only if expr is an absolute address. If name is exported,
the name entry in the symbol table in the object file will be marked as
CODE16, CODE32, or DATA, according to type. This can be used by the linker.

Usage

Use EQU to define constants. This is similar to the use of #define to define a constant in
C.

See KEEP on page 7-61 and EXPORT or GLOBAL on page 7-56 for information on
exporting symbols.

Examples

abc EQU 2 ; assigns the value 2 to the symbol abc.

xyz EQU label+8 ; assigns the address (label+8) to the
 ; symbol xyz.

fiq EQU 0x1C, CODE32 ; assigns the absolute address 0x1C to
 ; the symbol fiq, and marks it as code
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 7-55

Directives Reference
7.7.7 EXPORT or GLOBAL

The EXPORT directive declares a symbol that can be used by the linker to resolve symbol
references in separate object and library files. GLOBAL is a synonym for EXPORT.

Syntax

EXPORT symbol{[WEAK]}

where:

symbol is the symbol name to export. The symbol name is case-sensitive.

[WEAK] means that this instance of symbol should only be imported into other
sources if no other source exports an alternative instance.

Usage

Use EXPORT to give code in other files access to symbols in the current file.

Use the [WEAK] attribute to inform the linker that a different instance of symbol takes
precedence over this one, if a different one is available from another source.

See also IMPORT on page 7-59.

Example

 AREA Example,CODE,READONLY
 EXPORT DoAdd ; Export the function name
 ; to be used by external
 ; modules.
DoAdd ADD r0,r0,r1
7-56 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Directives Reference
7.7.8 EXTERN

The EXTERN directive provides the assembler with a name that is not defined in the
current assembly.

EXTERN is very similar to IMPORT, except that the name is not imported if no reference to
it is found in the current assembly (see IMPORT on page 7-59, and EXPORT or
GLOBAL on page 7-56).

Syntax

EXTERN symbol{[WEAK]}

where:

symbol is a symbol name defined in a separately assembled source file, object
file, or library. The symbol name is case-sensitive.

[WEAK] prevents the linker generating an error message if the symbol is not
defined elsewhere. It also prevents the linker searching libraries that are
not already included.

Usage

The name is resolved at link time to a symbol defined in a separate object file. The
symbol is treated as a program address. If [WEAK] is not specified, the linker generates
an error if no corresponding symbol is found at link time.

If [WEAK] is specified and no corresponding symbol is found at link time:

• If the reference is the destination of a B or BL instruction, the value of the symbol
is taken as the address of the following instruction. This makes the B or BL
instruction effectively a NOP.

• Otherwise, the value of the symbol is taken as zero.

Example

This example tests to see if the C++ library has been linked, and branches conditionally
on the result.

 AREA Example, CODE, READONLY
 EXTERN __CPP_INITIALIZE[WEAK] ; If C++ library linked, gets the address of
 ; __CPP_INITIALIZE function.
 LDR r0,__CPP_INITIALIZE ; If not linked, address is zeroed.
 CMP r0,#0 ; Test if zero.
 BEQ nocplusplus ; Branch on the result.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 7-57

Directives Reference
7.7.9 GET or INCLUDE

The GET directive includes a file within the file being assembled. The included file is
assembled at the location of the GET directive. INCLUDE is a synonym for GET.

Syntax

GET filename

where:

filename is the name of the file to be included in the assembly. The assembler
accepts pathnames in either UNIX or MS-DOS format.

Usage

GET is useful for including macro definitions, EQUs, and storage maps in an assembly.
When assembly of the included file is complete, assembly continues at the line
following the GET directive.

By default the assembler searches the current place for included files. The current place
is the directory where the calling file is located. Use the -i assembler command-line
option to add directories to the search path. File names and directory names containing
spaces must not be enclosed in double quotes (" ").

The included file can contain additional GET directives to include other files (see
Nesting directives on page 7-25).

If the included file is in a different directory from the current place, this becomes the
current place until the end of the included file. The previous current place is then
restored.

GET cannot be used to include object files (see INCBIN on page 7-60).

Example

 AREA Example, CODE, READONLY
 GET file1.s ; includes file1 if it exists
 ; in the current place.
 GET c:\project\file2.s ; includes file2
 GET c:\Program files\file3.s ; space is allowed
7-58 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Directives Reference
7.7.10 GLOBAL

See EXPORT or GLOBAL on page 7-56.

7.7.11 IMPORT

The IMPORT directive provides the assembler with a name that is not defined in the
current assembly.

IMPORT is very similar to EXTERN, except that the name is imported whether or not it is
referred to in the current assembly (see EXTERN on page 7-57, and EXPORT or
GLOBAL on page 7-56).

Syntax

IMPORT symbol{[WEAK]}

where:

symbol is a symbol name defined in a separately assembled source file, object
file, or library. The symbol name is case-sensitive.

WEAK prevents the linker generating an error message if the symbol is not
defined elsewhere. It also prevents the linker searching libraries that are
not already included.

Usage

The name is resolved at link time to a symbol defined in a separate object file. The
symbol is treated as a program address. If [WEAK] is not specified, the linker generates
an error if no corresponding symbol is found at link time.

If [WEAK] is specified and no corresponding symbol is found at link time:

• If the reference is the destination of a B or BL instruction, the value of the symbol
is taken as the address of the following instruction. This makes the B or BL
instruction effectively a NOP.

• Otherwise, the value of the symbol is taken as zero.

To avoid trying to access symbols that are not found at link time, use code like the
example in EXTERN on page 7-57.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 7-59

Directives Reference
7.7.12 INCBIN

The INCBIN directive includes a file within the file being assembled. The file is included
as it is, without being assembled.

Syntax

INCBIN filename

where:

filename is the name of the file to be included in the assembly. The assembler
accepts pathnames in either UNIX or MS-DOS format.

Usage

You can use INCBIN to include executable files, literals, or any arbitrary data. The
contents of the file are added to the current ELF section, byte for byte, without being
interpreted in any way. Assembly continues at the line following the INCBIN directive.

By default the assembler searches the current place for included files. See GET or
INCLUDE on page 7-58 for information on the current place.

File names and directory names must not contain spaces.

Example

 AREA Example, CODE, READONLY
 INCBIN file1.dat ; includes file1 if it
 ; exists in the
 ; current place.
 INCBIN c:\project\file2.txt ; includes file2

7.7.13 INCLUDE

See GET or INCLUDE on page 7-58
7-60 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Directives Reference
7.7.14 KEEP

The KEEP directive instructs the assembler to retain local symbols in the symbol table in
the object file.

Syntax

KEEP {symbol}

where:

symbol is the name of the local symbol to keep. If symbol is not specified, all local
symbols are kept except register-relative symbols.

Usage

By default, the only symbols that the assembler describes in its output object file are:

• exported symbols

• symbols that are relocated against.

Use KEEP to preserve local symbols that can be used to help debugging. Kept symbols
appear in the ARM debuggers and in linker map files.

KEEP cannot preserve register-relative symbols (see MAP on page 7-14).

Example

label ADC r2,r3,r4
 KEEP label ; makes label available to debuggers
 ADD r2,r2,r5
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 7-61

Directives Reference
7.7.15 NOFP

The NOFP directive disallows floating-point instructions in an assembly language source
file.

Syntax

NOFP

Usage

Use NOFP to ensure that no floating-point instructions are used in situations where there
is no support for floating-point instructions either in software or in target hardware.

If a floating-point instruction occurs after the NOFP directive, an Unknown opcode error is
generated and the assembly fails.

If a NOFP directive occurs after a floating-point instruction, the assembler generates the
error:

Too late to ban floating point instructions

and the assembly fails.

7.7.16 REQUIRE

The REQUIRE directive specifies a dependency between sections.

Syntax

REQUIRE label

where:

label is the name of the required label.

Usage

Use REQUIRE to ensure that a related section is included, even if it is not directly called.
If the section containing the REQUIRE directive is included in a link, the linker also
includes the section containing the definition of the specified label.
7-62 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Directives Reference
7.7.17 REQUIRE8 and PRESERVE8

The REQUIRE8 directive specifies that the current file requires 8-byte alignment of the
stack.

The PRESERVE8 directive specifies that the current file preserves 8-byte alignment of the
stack.

Syntax

REQUIRE8

PRESERVE8

Usage

LDRD and STRD instructions (double-word transfers) only work correctly if the address
they access is 8-byte aligned.

If your code includes LDRD or STRD transfers to or from the stack, use REQUIRE8 to instruct
the linker to ensure that your code is only called from objects that preserve 8-byte
alignment of the stack.

If your code preserves 8-byte alignment of the stack, use PRESERVE8 to inform the linker.

The linker ensures that any code that requires 8-byte alignment of the stack is only
called, directly or indirectly, by code that preserves 8-byte alignment of the stack.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 7-63

Directives Reference
7.7.18 RN

The RN directive defines a register name for a specified register.

Syntax

name RN expr

where:

name is the name to be assigned to the register. name cannot be the same as any
of the predefined names listed in Predefined register and coprocessor
names on page 3-9.

expr evaluates to a register number from 0 to 15.

Usage

Use RN to allocate convenient names to registers, to help you to remember what you use
each register for. Be careful to avoid conflicting uses of the same register under different
names.

Examples

regname RN 11 ; defines regname for register 11

sqr4 RN r6 ; defines sqr4 for register 6
7-64 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Directives Reference
7.7.19 ROUT

The ROUT directive marks the boundaries of the scope of local labels (see Local labels
on page 3-16).

Syntax

{name} ROUT

where:

name is the name to be assigned to the scope.

Usage

Use the ROUT directive to limit the scope of local labels. This makes it easier for you to
avoid referring to a wrong label by accident. The scope of local labels is the whole area
if there are no ROUT directives in it (see AREA on page 7-50).

Use the name option to ensure that each reference is to the correct local label. If the name
of a label or a reference to a label does not match the preceding ROUT directive, the
assembler generates an error message and the assembly fails.

Example

 ; code
routineA ROUT ; ROUT is not necessarily a routine
 ; code
3routineA ; code ; this label is checked
 ; code
 BEQ %4routineA ; this reference is checked
 ; code
 BGE %3 ; refers to 3 above, but not checked
 ; code
4routineA ; code ; this label is checked
 ; code
otherstuff ROUT ; start of next scope
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. 7-65

Directives Reference
7-66 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

-Glossary

ADS See ARM Developer Suite.

ADU See ARM Debugger for UNIX.

ADW See ARM Debugger for Windows.

ANSI American National Standards Institute. An organization that specifies standards for,
among other things, computer software.

Angel™ Angel is a program that enables you to develop and debug applications running on
ARM-based hardware. Angel can debug applications running in either ARM state or
Thumb state.

AOF ARM Object Format

API Application Program Interface.

Architecture The term used to identify a group of processors that have similar characteristics.

ARM Debugger for UNIX
ARM Debugger for UNIX (ADU) and ARM Debugger for Windows (ADW) are two
versions of the same ARM debugger software, running under UNIX or Windows
respectively. This debugger was issued originally as part of the ARM Software
Development Toolkit. It is still fully supported and is now supplied as part of the ARM
Developer Suite.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. Glossary-1

Glossary
ARM Debugger for Windows
ARM Debugger for Windows (ADW) and ARM Debugger for UNIX (ADU) are two
versions of the same ARM debugger software, running under Windows or UNIX
respectively. This debugger was issued originally as part of the ARM Software
Development Toolkit. It is still fully supported and is now supplied as part of the ARM
Developer Suite.

ARM Developer Suite
A suite of applications, together with supporting documentation and examples, that
enable you to write and debug applications for the ARM family of RISC processors.

ARM eXtended Debugger
The ARM eXtended Debugger (AXD) is the latest debugger software from ARM that
enables you to make use of a debug agent in order to examine and control the execution
of software running on a debug target. AXD is supplied in both Windows and UNIX
versions.

ARMulator® ARMulator is an instruction set simulator. It is a collection of modules that simulate the
instruction sets and architecture of various ARM processors.

armsd The ARM Symbolic Debugger (armsd) is an interactive source-level debugger
providing high-level debugging support for languages such as C, and low-level support
for assembly language. It is a command-line debugger that runs on all supported
platforms.

ATPCS ARM and Thumb Procedure Call Standard defines how registers and the stack will be
used for subroutine calls.

AXD See ARM eXtended Debugger.

Backus-Naur Format
Mathematical notation for defining logical structures.

Big-endian Memory organization where the least significant byte of a word is at a higher address
than the most significant byte.

BNF See Backus-Naur Format.

Byte A unit of memory storage consisting of eight bits.

Canonical Frame Address
In DWARF 2, this is an address on the stack specifying where the call frame of an
interrupted function is located.

CFA See Canonical Frame Address.

Char A unit of storage for a single character. ARM designs use a byte to store a single
character and an integer to store two to four characters.
Glossary-2 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Glossary
Class A C++ class involved in the image.

Coprocessor An additional processor which is used for certain operations. Usually used for
floating-point math calculations, signal processing, or memory management.

CPSR See Current Processor Status Register.

Current place In compiler terminology, the directory which contains files to be included in the
compilation process.

Current Processor Status Register
CPSR. A register containing the current state of control bits and flags.

See also Saved Processor Status Register.

Debugger An application that monitors and controls the execution of a second application.
Usually used to find errors in the application program flow.

Double word A 64-bit unit of information. Contents are taken as being an unsigned integer unless
otherwise stated.

DWARF Debug With Arbitrary Record Format

EC++ A variant of C++ designed to be used for embedded applications.

ELF Executable Linkable Format

Environment The actual hardware and operating system that an application will run on.

Execution view The address of regions and sections after the image has been loaded into memory and
started execution.

Flash memory Non-volatile memory that is often used to hold application code.

Globals Variables or functions with the image with global scope.

Global variables Variables that are accessible to all code in the application.

See also Local variables

Halfword A 16-bit unit of information. Contents are taken as being an unsigned integer unless
otherwise stated.

Heap The portion of computer memory that can be used for creating new variables.

Host A computer which provides data and other services to another computer.

ICE In-Circuit Emulator.

IDE Integrated Development Environment (CodeWarrior).

Image An executable file which has been loaded onto a processor for execution.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. Glossary-3

Glossary
A binary execution file loaded onto a processor and given a thread of execution. An
image can have multiple threads. An image is related to the processor on which its
default thread runs.

Inline Functions that are repeated in code each time they are used rather than having a
common subroutine. Assembler code placed within a C or C++ program.

See also Output sections

Input section Contains code or initialized data or describes a fragment of memory that must be set to
zero before the application starts.

See also Output sections

Interrupt A change in the normal processing sequence of an application caused by, for example,
an external signal.

Interworking Producing an application that uses both ARM and Thumb code.

Library A collection of assembler or compiler output objects grouped together into a single
repository.

Linker Software which produces a single image from one or more source assembler or
compiler output objects.

Little-endian Memory organization where the least significant byte of a word is at a lower address
than the most significant byte.

Local variable A variable that is only accessible to the subroutine that created it.

See also Global variables

Load view The address of regions and sections when the image has been loaded into memory but
has not yet started execution.

Memory management unit
Hardware that controls caches and access permissions to blocks of memory, and
translates virtual to physical addresses.

MMU See Memory Management Unit.

Monitor A control showing the data associated with a particular debugger/target object. These
can consist of a single, simple GUI control such as an edit field, or a more complex
multi-control dialog implemented as an ActiveX.

Multi-ICE® Multi-processor in-circuit emulator. ARM registered trademark.
Glossary-4 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Glossary
Output section A contiguous sequence of input sections that have the same RO, RW, or ZI attributes.
The sections are grouped together in larger fragments called regions. The regions will
be grouped together into the final executable image.

See also Region

PIC Position Independent Code.

See also ROPI.

PID Position Independent Data or the ARM Platform-Independent Development card.

See also RWPI.

PIE Platform-Independent Evaluator card. (ARM product.)

Profiling Accumulation of statistics during execution of a program being debugged, to measure
performance or to determine critical areas of code.

Call-graph profiling provides great detail but slows execution significantly. Flat
profiling provides simpler statistics with less impact on execution speed.

For both types of profiling you can specify the time interval between
statistics-collecting operations.

Program image See Image.

PSR See Processor Status Register

Processor Status Register
A register containing various control bits and flags.

See also Current Processor Status Register

See also Saved Processor Status Register.

Read Only Position Independent
Code and read-only data addresses can be changed at run-time.

Read Write Position Independent
Read/write data addresses can be changed at run-time.

Redirection The process of sending default output to a different destination or receiving default
input from a different source. This is commonly used to output text, that would
otherwise be displayed on the computer screen, to a file.

Reentrancy The ability of a subroutine to have more that one instance of the code active. Each
instance of the subroutine call has its own copy of any required static data.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. Glossary-5

Glossary
Remapping Changing the address of physical memory or devices after the application has started
executing. This is typically done to allow RAM to replace ROM once the initialization
has been done.

Regions In an Image, a region is a contiguous sequence of one to three output sections (RO, RW,
and ZI).

Retargeting The process of moving code designed for one execution environment to a new
execution environment.

ROPI See Read Only Position Independent.

RTOS Real Time Operating System.

RWPI See Read Write Position Independent.

Saved Processor Status Register
SPSR. A register that holds a copy of what was in the Current Processor Status Register
before the most recent exception. Each exception mode has its own SPSR.

Scatter-loading Assigning the address and grouping of code and data sections individually rather than
using single large blocks.

Scope The accessibility of a function or variable at a particular point in the application code.
Symbols which have global scope are always accessible. Symbols with local or private
scope are only accessible to code in the same subroutine or object.

Sections A block of software code or data for an Image.

See also Input sections

Semihosting A mechanism whereby the target communicates I/O requests made in the application
code to the host system, rather attempting to support the I/O itself.

Software Interrupt An instruction that causes the processor to call a programer-specified subroutine. Used
by ARM to handle semihosting.

SPSR See Saved Processor Status Register.

Signal An indication of abnormal processor operation.

Stack The portion of computer memory that is used to record the address of code that calls a
subroutine. The stack can also be used for parameters and temporary variables.

SWI See Software Interrupt.
Glossary-6 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Glossary
Target The actual target processor, (real or simulated), on which the target application is
running.

The fundamental object in any debugging session. The basis of the debugging system.
The environment in which the target software will run. It is essentially a collection of
real or simulated processors.

Vector Floating Point
A standard for floating-point coprocessors where several data values can be processed
by a single instruction.

Veneer A small block of code used with subroutine calls when there is a requirement to change
processor state or branch to an address that cannot be reached in the current processor
state.

VFP See Vector Floating Point.

Volatile Memory addresses where the contents can change independently of the executing
application are described as volatile.

Watchpoint A location within the image which will be monitored and which will cause execution to
break when it changes.

Word A 32-bit unit of information. Contents are taken as being an unsigned integer unless
otherwise stated.

Zero Initialized R/W memory used to hold variables that do not have an initial value. The memory is
normally set to zero on reset.

ZI See Zero Initialized.
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. Glossary-7

Glossary
Glossary-8 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A

Index

The items in this index are listed in alphabetical order, with symbols and numerics appearing at the end. The
references given are to page numbers.
A
Absolute addresses 3-15
Absolute maps 2-50
ADD instruction 2-57
Addresses

loading into registers 2-29
ADR

ARM pseudo-instruction 4-76, 4-77
Thumb pseudo-instruction 5-40

ADR pseudo-instruction 2-29, 2-57
ADR Thumb pseudo-instruction 2-29
ADRL pseudo-instruction 2-29, 2-57
ALIGN directive 2-55, 7-48
Alignment 2-55
ALU status flags 2-19
:AND: operator 2-55
AREA directive 2-13, 2-15, 7-50
AREA directive (literal pools) 2-27
armsd

command syntax 3-2
Assembly language

absolute addresses 3-15

Absolute maps 2-50
alignment 2-55
base register 2-51
binary operators 3-26
block copy 2-43
Boolean constants 2-14
built-in variables 3-10
case rules 2-12
character constants 2-14
code size 2-60
comments 2-13
condition code suffixes 2-20
conditional execution 2-19
constants 2-14
coprocessor names 3-9
data structures 2-50
defining macros 7-26
ELF sections 2-15
entry point 2-16, 7-54
examples 2-2, 2-15, 2-17, 2-21,

2-27, 2-30, 2-34, 2-36, 2-43,
2-60, 2-62

examples, Thumb 2-18, 2-23, 2-37,
2-45

execution speed 2-60
expressions 3-18
floating-point literals 3-22
format of source lines 3-8
global variables 7-4, 7-6
immediate constants, ARM 2-25
jump tables 2-31
labels 2-13, 3-15
line format 2-12
line length 2-12
literal pools 2-27
literals 3-18
loading addresses 2-29
loading constants 2-24
local labels 2-13, 3-16
logical

expressions 3-23
variables 3-13

logical literals 3-23
macros 2-47
maintenance 2-55
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. Index-1
ARM Confidential Draft

Index
maps 2-50
multiple register transfers 2-38
multiplicative operators 3-26
nesting subroutines 2-42
numeric constants 2-14, 3-13
numeric expressions 3-20
numeric literals 3-21
numeric variables 3-13
operator precedence 3-18, 3-26
operators 3-18
padding 2-55
pc 2-5, 2-39, 2-42, 2-45, 3-10, 3-15,

3-23
program counter 2-5, 3-10, 3-15,

3-23
program-relative 2-13

expressions 3-23
program-relative labels 3-15
program-relative maps 2-53
register names 3-9
register-based

maps 2-52
register-relative

expressions 3-23
labels 3-15

register-relative address 2-13
relational operators 3-29
relative maps 2-51
shift operators 3-27
speed 2-60
stacks 2-41
string

expressions 3-19
manipulation 3-27
variables 3-13

string constants 2-14
string literals 3-19
subroutines 2-17
symbol naming rules 3-12
symbols 2-57, 3-12
Thumb block copy 2-45
unary operators 3-24
variable substitution 3-14
variables 3-13

built-in 3-10
global 7-4, 7-6
local 7-5, 7-6

VFP directives and notation 6-35
ASSERT directive 2-54, 2-64, 7-42

B
B instruction, Thumb 2-19
Barrel shifter 2-8, 2-19
Barrel shifter, Thumb 2-10
:BASE: operator 2-57, 3-24
Base register 2-51
Binary operators, assembly 3-26
BL instruction 2-17
BL instruction, Thumb 2-19
Block copy, assembly language 2-43
Block copy, Thumb 2-45
Boolean constants, assembly language

2-14
Branch instructions 2-6
Branch instructions, Thumb 2-10
BX instruction 2-18

C
Case rules, assembly language 2-12
Character constants, assembly language

2-14
:CHR: operator 3-24
CN directive 7-8
Code size 2-21, 2-60
CODE16 directive 2-18, 3-2, 7-52
CODE32 directive 2-18, 7-52
Command syntax

armsd 3-2
Comments

assembly language 2-13
Condition code suffixes 2-20
Conditional execution, assembly 2-19,

2-21
Conditional execution, Thumb 2-9,

2-10
Constants, assembly 2-14
Coprocessor names, assembly 3-9
CP directive 7-9
CPSR 2-5, 2-19
Current Program Status Register 2-5

D
DATA directive 7-24
Data maps, assembly 2-50

Data processing instructions 2-6
Data processing instructions, Thumb

2-10
Data structure, assembly 2-50
DCB directive 7-17
DCD directive 7-18
DCDU directive 7-19
DCFD directive 7-20
DCFS directive 7-21
DCI directive 7-22
DCQ directive 7-23
DCW directive 7-24
directive 7-29
Directives, assembly language

table of 5-1
ALIGN 2-55, 7-48
AREA 2-13, 2-15, 7-50
AREA (literal pools) 2-27
ASSERT 2-54, 2-64, 7-42
CN 7-8
CODE16 2-18, 3-2, 7-52
CODE32 2-18, 7-52
CP 7-9
DATA 7-24
DCB 7-17
DCD 7-18
DCDU 7-19
DCFD 7-20
DCFS 7-21
DCI 7-22
DCQ 7-23
DCW 7-24
DN 7-10
ELSE 7-29
END 2-16, 7-53
END (literal pools) 2-27
ENDFUNC 7-41
ENDIF 7-29
ENTRY 2-16, 7-54
EQU 3-13, 7-55
EXPORT 7-56
EXTERN 7-57
FIELD 7-15
FN 7-11
FRAME ADDRESS 7-32
FRAME POP 7-33
FRAME PUSH 7-34
FRAME REGISTER 7-35
FRAME RESTORE 7-36
Index-2 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A
ARM Confidential Draft

Index
FRAME SAVE 7-37
FRAME STATE REMEMBER

7-38
FRAME STATE RESTORE 7-39
FUNCTION 7-40
GBLA 3-6, 3-13, 7-4, 7-44
GBLL 3-6, 3-13, 7-4, 7-44
GBLS 3-6, 3-13, 7-4, 7-44
GET 3-5, 7-58
GLOBAL 7-56
IF 7-28, 7-29, 7-30
IMPORT 7-59
INCBIN 7-60
INCLUDE 3-5, 7-58
INFO 7-43
KEEP 7-61
LCLA 3-13, 7-5, 7-44
LCLL 3-13, 7-44
LCLS 3-13, 7-44
LTORG 7-13
MACRO 2-47, 7-26
MAP 2-50, 7-14
MEND 7-26, 7-44
MEXIT 7-28
nesting 7-25
NOFP 7-62
OPT 3-10, 7-44
REQUIRE 7-62, 7-63
RLIST 3-3, 7-7
RN 7-64
ROUT 2-13, 3-16, 3-17, 7-65
SETA 3-6, 3-10, 3-13, 7-6, 7-44
SETL 3-6, 3-10, 3-13, 7-6, 7-44
SETS 3-6, 3-10, 3-13, 7-6, 7-44
SN 7-10
SPACE 7-16
SUBT 7-46
TTL 7-46
VFPASSERT SCALAR 6-36
VFPASSERT VECTOR 6-37
WEND 7-30
WHILE 7-28, 7-30
! 7-43
7-15
% 7-16
& 7-18
* 7-55
= 7-17
] 7-29

^ 7-14
| 7-29

DN directive 7-10

E
ELSE directive 7-29
END directive 2-16, 7-53
END directive (literal pools) 2-27
ENDFUNC directive 7-41
ENDIF directive 7-29
ENTRY directive 2-16, 7-54
Entry point

assembly 7-54
Entry point, assembly 2-16
EQU directive 3-13, 7-55
Execution speed 2-21, 2-60
EXPORT directive 7-56
Expressions, assembly 3-18
EXTERN directive 7-57

F
FIELD directive 7-15
floating-point literals, assembly 3-22
FN directive 7-11
FRAME ADDRESS directive 7-32
FRAME POP directive 7-33
FRAME PUSH directive 7-34
FRAME REGISTER directive 7-35
FRAME RESTORE directive 7-36
FRAME SAVE directive 7-37
FRAME STATE REMEMBER

directive 7-38
FRAME STATE RESTORE directive

7-39
FUNCTION directive 7-40

G
GBLA directive 3-6, 3-13, 7-4, 7-44
GBLL directive 3-6, 3-13, 7-4, 7-44
GBLS directive 3-6, 3-13, 7-4, 7-44
GET directive 3-5, 7-58
GLOBAL directive 7-56

H
Halfwords

in load and store instructions 2-7

I
IF directive 7-28, 7-29, 7-30
Immediate constants, ARM 2-25
IMPORT directive 7-59
INCBIN directive 7-60
INCLUDE directive 3-5, 7-58
:INDEX: operator 2-57, 3-24
INFO directive 7-43
Instruction set

ARM 2-6
Thumb 2-9

Instructions, assembly language
ADD 2-57
BL 2-17
BX 2-18
LDM 2-38, 2-53, 3-3, 7-7
LDM, Thumb 2-45
LDR 2-50
MOV 2-24, 2-25, 2-52
MRS 2-8
MSR 2-8
MVN 2-24, 2-25
POP, Thumb 2-45
PUSH, Thumb 2-45
STM 2-38, 2-53, 3-3, 7-7
STM, Thumb 2-45
STR 2-50

Invoke 3-2

J
Jump tables, assembly language 2-31

K
KEEP directive 7-61
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. Index-3
ARM Confidential Draft

Index
L
Labels, assembly 3-15
Labels, assembly language 2-13
Labels, local, assembly 3-16
LCLA directive 3-13, 7-5, 7-44
LCLL directive 3-13, 7-44
LCLS directive 3-13, 7-44
LDFD pseudo-instruction 6-34, 7-13
LDFS pseudo-instruction 7-13
LDM instruction 2-38, 2-53, 3-3, 7-7

Thumb 2-45
LDR

instruction 2-50
pseudo-instruction 2-24, 2-26, 2-34,

4-80
Thumb pseudo-instruction 5-41

LDR pseudo-instruction 7-13
:LEFT: operator 3-27
:LEN: operator 3-24
Line format, assembly language 2-12
Line length, assembly language 2-12
Link register 2-5, 2-17
Linking

assembly language labels 2-13
Literal pools, assembly language 2-27
Loading constants, assembly language

2-24
Local

labels, assembly 3-16
variables, assembly 7-5, 7-6

Local labels, assembly language 2-13
Logical

expressions, assembly 3-23
variable, assembly 3-13

Logical literals, assembly 3-23
LTORG directive 7-13

M
MACRO directive 2-47, 7-26
MAP directive 2-50, 7-14
Maps, assembly language

absolute 2-50
program-relative 2-53
register-based 2-52
relative 2-51

MEND directive 7-26, 7-44

MEXIT directive 7-28
MOV instruction 2-24, 2-25, 2-52
MRS instruction 2-8
MSR instruction 2-8
Multiple register transfers 2-38
Multiplicative operators, assembly

3-26
MVN instruction 2-24, 2-25

N
Nesting directives 7-25
Nestingsubroutines,assemblylanguage

2-42
NOFP directive 7-62
NOP pseudo-instruction 4-76, 4-82
NOP Thumb pseudo-instruction 5-43
Numeric constants, assembly 3-13
Numeric constants, assembly language

2-14
Numeric expressions, assembly 3-20
numeric literals, assembly 3-21
Numeric variable, assembly 3-13

O
Operator precedence, assembly 3-18,

3-26
Operators, assembly language

:BASE: 2-57
:INDEX: 2-57
:AND: 2-55

OPT directive 3-10, 7-44

P
Padding 2-55
Parameters, assembly macros 2-47
pc, assembly 3-10, 3-15, 3-23
pc, assembly language 2-5, 2-39, 2-42,

2-45
POP instruction, Thumb 2-45
Processor modes 2-4
Program counter, assembly 3-10, 3-15,

3-23

program counter, assembly language
2-5

Program counter, Thumb 2-11
Program-relative

expressions 3-23
labels 3-15

Program-relative address 2-13
Program-relative maps 2-53
Prototype statement 2-47
Pseudo-instructions, assembly language

ADR 2-29, 2-57, 4-76, 4-77
ADR (Thumb) 2-29, 5-40
ADRL 2-29, 2-57
LDFD 6-34, 7-13
LDFS 7-13
LDR 2-24, 2-26, 2-34, 4-80, 7-13
LDR (literal pools) 2-27
LDR (Thumb) 5-41
NOP 4-76, 4-82
NOP (Thumb) 5-43

PUSH instruction, Thumb 2-45

R
Register

names, assembly 3-9
Register access, Thumb 2-9
Register banks 2-4
Register-based

symbols 2-57
Register-based maps 2-52
Register-relative

expressions 3-23
Register-relative address 2-13
Register-relative labels 3-15
Registers 2-4
Relational operators, assembly 3-29
Relative maps 2-51
REQUIRE directive 7-62, 7-63
:RIGHT: operator 3-27
RLIST directive 3-3, 7-7
RN directive 7-64
ROUT directive 2-13, 3-16, 3-17, 7-65

S
Scope, assembly language 2-13
Index-4 Copyright © 2000 ARM Limited. All rights reserved. ARM DUI 0068A
ARM Confidential Draft

Index
SETA directive 3-6, 3-10, 3-13, 7-6,
7-44

SETL directive 3-6, 3-10, 3-13, 7-6,
7-44

SETS directive 3-6, 3-10, 3-13, 7-6,
7-44

Shift operators, assembly 3-27
SN directive 7-10
SPACE directive 7-16
Stack pointer 2-4
Stacks, assembly language 2-41
Status flags 2-19
STM instruction 2-38, 2-53, 3-3, 7-7

Thumb 2-45
STR

instruction 2-50
:STR: operator 3-24
String

expressions, assembly 3-19
manipulation, assembly 3-27
variable, assembly 3-13

String constants, assembly language
2-14

String literals, assembly 3-19
Subroutines, assembly language 2-17
SUBT directive 7-46
Symbols

assembly language 3-12
assembly language, Naming rules

3-12
Symbols, register-based 2-57

T
Thumb

BX instruction 2-18
conditional execution 2-19
direct loading 2-26
example assembly language 2-18
instruction set 2-9
LDM and STM instructions 2-45
popping pc 2-42

TTL directive 7-46

U
Unary operators, assembly 3-24

V
Variables, assembly 3-13

built-in 3-10
global 7-4, 7-6
local 7-5, 7-6
substitution 3-14

VFP directives and notation 6-35
VFPASSERT SCALAR directive 6-36
VFPASSERT VECTOR directive 6-37

W
WEAK symbol 7-57, 7-59
WEND directive 7-30
WHILE directive 7-28, 7-30

Symbols
! directive 7-43
directive 7-15
% directive 7-16
& directive 7-18
* directive 7-55
= directive 7-17
^ directive 7-14
| directive 7-29
ARM DUI 0068A Copyright © 2000 ARM Limited. All rights reserved. Index-5
ARM Confidential Draft

	Contents
	Preface
	About this book
	Intended audience
	Using this book
	Typographical conventions
	Further reading
	ARM publications
	Other publications

	Feedback
	Feedback on the ARM Developer Suite
	Feedback on this book

	Introduction
	1.1 About the ARM Developer Suite assemblers

	Writing ARM and Thumb Assembly Language
	2.1 Introduction
	2.1.1 Code examples

	2.2 Overview of the ARM architecture
	2.2.1 Architecture versions
	2.2.2 ARM and Thumb state
	2.2.3 Processor mode
	2.2.4 Registers
	30 general-purpose, 32-bit registers
	The
	The
	Five

	2.2.5 ARM instruction set overview
	Branch instructions
	Data processing instructions
	Single register load and store instructions
	Multiple register load and store instructions
	Status register access instructions
	Semaphore instructions
	Coprocessor instructions

	2.2.6 ARM instruction capabilities
	Conditional execution
	Register access
	Access to the inline barrel shifter

	2.2.7 Thumb instruction set overview
	2.2.8 Thumb instruction capabilities
	Conditional execution
	Register access
	Access to the barrel shifter

	2.2.9 Differences between Thumb and ARM instruction sets
	Branch instructions
	Data processing instructions
	Single register load and store instructions
	Multiple register load and store instructions

	2.3 Structure of assembly language modules
	2.3.1 Layout of assembly language source files
	Case rules
	Line length
	Labels
	Local labels
	Comments
	Constants

	2.3.2 An example ARM assembly language module
	ELF sections and the AREA directive
	The ENTRY directive
	Application execution
	Application termination
	The END directive

	2.3.3 Calling subroutines
	2.3.4 An example Thumb assembly language module
	CODE32 and CODE16 directives
	BX instruction

	2.4 Conditional execution
	2.4.1 The ALU status flags
	2.4.2 Execution conditions
	Examples

	2.4.3 Using conditional execution in ARM state
	2.4.4 Example of the use of conditional execution
	Converting to Thumb
	Branch prediction and caches

	2.5 Loading constants into registers
	2.5.1 Direct loading with MOV and MVN
	Direct loading with MOV in Thumb state

	2.5.2 Loading with LDR Rd, =const
	Placing literal pools

	2.5.3 Loading floating-point constants

	2.6 Loading addresses into registers
	2.6.1 Direct loading with ADR and ADRL
	Implementing a jump table with ADR
	Converting to Thumb

	2.6.2 Loading addresses with LDR Rd, = label
	An LDR Rd, =label example: string copying
	Converting to Thumb

	2.7 Load and store multiple register instructions
	2.7.1 ARM LDM and STM instructions
	Syntax
	Usage

	2.7.2 LDM and STM addressing modes
	2.7.3 Implementing stacks with LDM and STM
	Stacking registers for nested subroutines

	2.7.4 Block copy with LDM and STM
	2.7.5 Thumb LDM and STM instructions
	LDM and STM
	PUSH and POP
	Thumb-state block copy example

	2.8 Using macros
	2.8.1 Test-and-branch macro example
	2.8.2 Unsigned integer division macro example

	2.9 Describing data structures with MAP and FIELD directives
	2.9.1 Absolute maps
	2.9.2 Relative maps
	2.9.3 Register-based maps
	2.9.4 Program-relative maps
	2.9.5 Finding the end of the allocated data
	2.9.6 Forcing correct alignment
	2.9.7 Using register-based MAP and FIELD directives
	Defining register-based symbols
	Setting up a C-type structure
	Making faster access possible

	2.9.8 Using two register-based structures
	2.9.9 Avoiding problems with MAP and FIELD directives

	2.10 Using frame directives

	Assembler Reference
	3.1 Command syntax
	3.2 Format of source lines
	3.3 Predefined register and coprocessor names
	3.3.1 Predeclared register names
	3.3.2 Predeclared program status register names
	3.3.3 Predeclared floating-point register names
	3.3.4 Predeclared coprocessor names

	3.4 Built-in variables
	3.4.1 Determining the armasm version at assembly time

	3.5 Symbols
	3.5.1 Symbol naming rules
	3.5.2 Variables
	3.5.3 Numeric constants
	3.5.4 Assembly time substitution of variables
	Examples

	3.5.5 Labels
	Program-relative labels
	Register-relative labels
	Absolute addresses

	3.5.6 Local labels
	Syntax

	3.6 Expressions, literals, and operators
	3.6.1 String expressions
	Example

	3.6.2 String literals
	Examples

	3.6.3 Numeric expressions
	Example

	3.6.4 Numeric literals
	Examples

	3.6.5 Floating-point literals
	Examples

	3.6.6 Register-relative and program-relative expressions
	Example

	3.6.7 Logical expressions
	3.6.8 Logical literals
	3.6.9 Unary operators
	Example of use of :SB_OFFSET_19_12: and :SB_OFFSET_11_ 0

	3.6.10 Binary operators
	Multiplicative operators
	String manipulation operators
	Shift operators
	Addition, subtraction, and logical operators
	Relational operators
	Boolean operators

	ARM Instruction Reference
	4.1 Conditional execution
	4.1.1 The Q flag

	4.2 ARM memory access instructions
	4.2.1 LDR and STR, words and unsigned bytes
	Syntax
	Zero offset
	Pre-indexed offset
	Program-relative
	Post-indexed offset
	Flexible offset syntax
	Address alignment for word transfers
	Loading to r15
	Saving from r15
	Architectures
	Examples

	4.2.2 LDR and STR, halfwords and signed bytes
	Syntax
	Zero offset
	Pre-indexed offset
	Program-relative
	Post-indexed offset
	Offset syntax
	Address alignment for halfword transfers
	Loading to r15
	Architectures
	Examples
	Incorrect example

	4.2.3 LDR and STR, doublewords
	Syntax
	Zero offset
	Pre-indexed offset
	Program-relative
	Post-indexed offset
	Offset syntax
	Address alignment
	Architectures
	Examples
	Incorrect examples

	4.2.4 LDM and STM
	Syntax
	Non word-aligned addresses
	Loading to r15
	Loading or storing the base register, with writeback
	Architectures
	Examples
	Incorrect examples

	4.2.5 PLD
	Syntax
	Usage
	Alignment
	Architectures
	Examples

	4.2.6 SWP
	Syntax
	Non word-aligned addresses
	Architectures

	4.3 ARM general data processing instructions
	4.3.1 Flexible second operand
	Syntax
	ASR
	LSR and LSL
	ROR
	RRX
	The carry flag
	Instruction substitution
	Examples
	Incorrect examples

	4.3.2 ADD, SUB, RSB, ADC, SBC, and RSC
	Syntax
	Usage
	Condition flags
	Use of R15
	Architectures
	Examples
	Incorrect example
	Multiword arithmetic examples

	4.3.3 AND, ORR, EOR, and BIC
	Syntax
	Usage
	Condition flags
	Use of R15
	Architectures
	Examples
	Incorrect example

	4.3.4 MOV and MVN
	Syntax
	Usage
	Condition flags
	Use of R15
	Architectures
	Examples
	Incorrect examples

	4.3.5 CMP and CMN
	Syntax
	Usage
	Condition flags
	Use of R15
	Architectures
	Examples
	Incorrect example

	4.3.6 TST and TEQ
	Syntax
	Usage
	Condition flags
	Use of R15
	Architectures
	Examples
	Incorrect example

	4.3.7 CLZ
	Syntax
	Usage
	Condition flags
	Architectures
	Examples

	4.4 ARM multiply instructions
	4.4.1 MUL and MLA
	Syntax
	Usage
	Condition flags
	Architectures
	Examples
	Incorrect examples

	4.4.2 UMULL, UMLAL, SMULL and SMLAL
	Syntax
	Usage
	Condition flags
	Architectures
	Examples
	Incorrect examples

	4.4.3 SMULxy
	Syntax
	Usage
	Condition flags
	Architectures
	Example
	Incorrect examples

	4.4.4 SMLAxy
	Syntax
	Usage
	Condition flags
	Architectures
	Examples
	Incorrect examples

	4.4.5 SMULWy
	Syntax
	Usage
	Condition flags
	Architectures
	Examples
	Incorrect examples

	4.4.6 SMLAWy
	Syntax
	Usage
	Condition flags
	Architectures
	Examples
	Incorrect examples

	4.4.7 SMLALxy
	Syntax
	Usage
	Condition flags
	Architectures
	Examples
	Incorrect examples

	4.4.8 MIA, MIAPH, and MIAxy
	Syntax
	Usage
	Condition flags
	Architectures
	Examples

	4.5 ARM saturating arithmetic instructions
	4.5.1 QADD, QSUB, QDADD, and QDSUB
	Syntax
	Usage
	Condition flags
	Architectures
	Examples
	Examples

	4.6 ARM branch instructions
	4.6.1 B and BL
	Syntax
	Usage
	Architectures
	Examples

	4.6.2 BX
	Syntax
	Usage
	Architectures
	Examples

	4.6.3 BLX
	Syntax
	Usage
	Architectures
	Examples
	Incorrect example

	4.7 ARM coprocessor instructions
	4.7.1 CDP, CDP2
	Syntax
	Usage
	Architectures

	4.7.2 MCR, MCR2, MCRR
	Syntax
	Usage
	Architectures

	4.7.3 MRC, MRC2
	Syntax
	Usage
	Architectures

	4.7.4 MRRC
	Syntax
	Usage
	Architectures

	4.7.5 LDC, STC
	Syntax
	Usage
	Architectures

	4.7.6 LDC2, STC2
	Syntax
	Usage
	Architectures

	4.8 Miscellaneous ARM instructions
	4.8.1 SWI
	Syntax
	Usage
	Condition flags
	Architectures
	Example

	4.8.2 MRS
	Syntax
	Usage
	Condition flags
	Architectures
	Example

	4.8.3 MSR
	Syntax
	Usage
	Condition flags
	Architectures
	Example

	4.8.4 BKPT
	Syntax
	Usage
	Architectures
	Examples

	4.8.5 MAR, MRA
	Syntax
	Usage
	Architectures
	Examples

	4.9 ARM pseudo-instructions
	4.9.1 ADR ARM pseudo-instruction
	Syntax
	Usage
	Example

	4.9.2 ADRL ARM pseudo-instruction
	Syntax
	Usage
	Example

	4.9.3 LDR ARM pseudo-instruction
	Syntax
	Usage
	Example

	4.9.4 NOP ARM pseudo-instruction
	Syntax
	Usage

	Thumb Instruction Reference
	5.1 Thumb memory access instructions
	5.1.1 LDR and STR, immediate offset
	Syntax
	Usage
	Address alignment for word and halfword transfers
	Architectures
	Examples
	Incorrect examples

	5.1.2 LDR and STR, register offset
	Syntax
	Usage
	Address alignment for word and halfword transfers
	Architectures
	Examples
	Incorrect examples

	5.1.3 LDR and STR, pc or sp relative
	Syntax
	Usage
	Address alignment for word and halfword transfers
	Architectures
	Examples
	Incorrect examples

	5.1.4 PUSH and POP
	Syntax
	Usage
	POP {
	Condition flags
	Architectures
	Examples
	Incorrect examples

	5.1.5 LDMIA and STMIA
	Syntax
	Usage
	Architectures
	Examples
	Incorrect examples

	5.2 Thumb arithmetic instructions
	5.2.1 ADD and SUB, low registers
	Syntax
	Usage
	Restrictions
	Condition flags
	Architectures
	Examples
	Incorrect examples

	5.2.2 ADD, high or low registers
	Syntax
	Usage
	Condition flags
	Architectures
	Examples

	5.2.3 ADD and SUB, sp
	Syntax
	Usage
	Condition flags
	Architectures
	Examples

	5.2.4 ADD, pc or sp relative
	Syntax
	Usage
	Condition flags
	Architectures
	Examples

	5.2.5 ADC, SBC, and MUL
	Syntax
	Usage
	Restrictions
	Condition flags
	Architectures
	Example

	5.3 Thumb general data processing instructions
	5.3.1 AND, ORR, EOR, and BIC
	Syntax
	Usage
	Condition flags
	Architectures
	Example

	5.3.2 ASR, LSL, LSR, and ROR
	Syntax
	Register-controlled shift
	Immediate shift
	Condition flags
	Architectures
	Examples
	Incorrect examples

	5.3.3 CMP and CMN
	Syntax
	Usage
	Restrictions
	Condition flags
	Architectures
	Examples
	Incorrect examples

	5.3.4 MOV, MVN, and NEG
	Syntax
	Usage
	Restrictions
	Condition flags
	Architectures
	Examples
	Incorrect examples

	5.3.5 TST
	Syntax
	Usage
	Restrictions
	Condition flags
	Architectures
	Example

	5.4 Thumb branch instructions
	5.4.1 B
	Syntax
	Usage
	Architectures
	Examples

	5.4.2 BL
	Syntax
	Usage
	Architectures
	Example

	5.4.3 BX
	Syntax
	Usage
	Architectures
	Examples

	5.4.4 BLX
	Syntax
	Usage
	Architectures
	Examples

	5.5 Thumb software interrupt and breakpoint instructions
	5.5.1 SWI
	Syntax
	Usage
	Condition flags
	Architectures
	Example

	5.5.2 BKPT
	Syntax
	Usage
	Architectures
	Examples

	5.6 Thumb pseudo-instructions
	5.6.1 ADR Thumb pseudo-instruction
	Syntax
	Usage
	Example

	5.6.2 LDR Thumb pseudo-instruction
	Syntax
	Usage
	Example

	5.6.3 NOP Thumb pseudo-instruction
	Syntax
	Condition flags

	Vector Floating-point Programming
	6.1 The vector floating-point coprocessor
	6.2 Floating-point registers
	6.2.1 Register banks
	6.2.2 Vectors
	Vector wrap-around
	Vector stride
	Restriction on vector length

	6.3 Vector and scalar operations
	6.3.1 Control of scalar, vector and mixed operations
	Scalar operations
	Vector operations
	Mixed scalar and vector operations

	6.4 VFP and condition codes
	6.5 VFP system registers
	6.5.1 FPSCR, the floating-point status and control register
	6.5.2 FPEXC, the floating-point exception register
	6.5.3 FPSID, the floating-point system ID register
	6.5.4 Modifying individual bits of a VFP system register

	6.6 Flush-to-zero mode
	6.6.1 When to use flush-to-zero mode
	6.6.2 The effects of using flush-to-zero mode
	6.6.3 Operations not affected by flush-to-zero mode

	6.7 VFP instructions
	6.7.1 FABS, FCPY, and FNEG
	Syntax
	Usage
	Exceptions
	Examples

	6.7.2 FADD and FSUB
	Syntax
	Usage
	Exceptions
	Examples

	6.7.3 FCMP
	Syntax
	Usage
	Exceptions
	Examples

	6.7.4 FCVTDS
	Syntax
	Usage
	Exceptions
	Examples

	6.7.5 FCVTSD
	Syntax
	Usage
	Exceptions
	Examples

	6.7.6 FDIV
	Syntax
	Usage
	Exceptions
	Examples

	6.7.7 FLD and FST
	Syntax
	Usage
	Examples

	6.7.8 FLDM and FSTM
	Syntax
	Usage
	Unspecified precision
	Examples

	6.7.9 FMAC, FNMAC, FMSC, and FNMSC
	Syntax
	Usage
	Exceptions
	Examples

	6.7.10 FMDHR, FMDLR, FMRDH, and FMRDL
	Syntax
	Usage
	Exceptions
	Examples

	6.7.11 FMRS and FMSR
	Syntax
	Usage
	Exceptions
	Examples

	6.7.12 FMRX, FMXR, and FMSTAT
	Syntax
	Usage
	Exceptions
	Examples

	6.7.13 FMUL and FNMUL
	Syntax
	Usage
	Exceptions
	Examples

	6.7.14 FSITO and FUITO
	Syntax
	Usage
	Exceptions
	Examples

	6.7.15 FSQRT
	Syntax
	Usage
	Exceptions
	Examples

	6.7.16 FTOSI and FTOUI
	Syntax
	Usage
	Exceptions
	Examples

	6.8 VFP pseudo-instruction
	6.8.1 FLD pseudo-instruction
	Syntax
	Usage
	Examples

	6.9 VFP directives and vector notation
	6.9.1 VFPASSERT SCALAR
	Syntax
	Usage
	Example

	6.9.2 VFPASSERT VECTOR
	Syntax
	Usage
	Example

	Directives Reference
	7.1 Alphabetical list of directives
	7.2 Symbol definition directives
	7.2.1 GBLA, GBLL, and GBLS
	Syntax
	Usage
	Examples

	7.2.2 LCLA, LCLL, and LCLS
	Syntax
	Usage
	Example

	7.2.3 SETA, SETL, and SETS
	Syntax
	Usage
	Examples

	7.2.4 RLIST
	Syntax
	Usage
	Example

	7.2.5 CN
	Syntax
	Usage
	Example

	7.2.6 CP
	Syntax
	Usage
	Example

	7.2.7 DN and SN
	Syntax
	Usage
	Examples

	7.2.8 FN
	Syntax
	Usage
	Example

	7.3 Data definition directives
	7.3.1 LTORG
	Syntax
	Usage
	Example

	7.3.2 MAP
	Syntax
	Usage
	Examples

	7.3.3 FIELD
	Syntax
	Usage
	Example

	7.3.4 SPACE
	Syntax
	Usage
	Example

	7.3.5 DCB
	Syntax
	Usage
	Example

	7.3.6 DCD and DCDU
	Syntax
	Usage
	Examples

	7.3.7 DCDO
	Syntax
	Usage
	Example

	7.3.8 DCFD and DCFDU
	Syntax
	Usage
	Examples

	7.3.9 DCFS and DCFSU
	Syntax
	Usage
	Example

	7.3.10 DCI
	Syntax
	Usage
	Example

	7.3.11 DCQ and DCQU
	Syntax
	Usage
	Example

	7.3.12 DCW and DCWU
	Syntax
	Usage
	Example

	7.3.13 DATA

	7.4 Assembly control directives
	7.4.1 Nesting directives
	7.4.2 MACRO and MEND
	Syntax
	Usage
	Examples

	7.4.3 MEXIT
	Usage
	Example

	7.4.4 IF, ELSE, and ENDIF
	Syntax
	Usage
	Example

	7.4.5 WHILE and WEND
	Syntax
	Usage
	Example

	7.5 Frame description directives
	7.5.1 FRAME ADDRESS
	Syntax
	Usage
	Example

	7.5.2 FRAME POP
	Syntax
	Usage

	7.5.3 FRAME PUSH
	Syntax
	Usage
	Example

	7.5.4 FRAME REGISTER
	Syntax
	Usage

	7.5.5 FRAME RESTORE
	Syntax
	Usage

	7.5.6 FRAME SAVE
	Syntax
	Usage

	7.5.7 FRAME STATE REMEMBER
	Syntax
	Usage
	Example

	7.5.8 FRAME STATE RESTORE
	Syntax
	Usage

	7.5.9 FUNCTION or PROC
	Syntax
	Usage
	Example

	7.5.10 ENDFUNC or ENDP

	7.6 Reporting directives
	7.6.1 ASSERT
	Syntax
	Usage
	Example

	7.6.2 INFO
	Syntax
	Usage
	Examples

	7.6.3 OPT
	Syntax
	Usage
	Example

	7.6.4 TTL and SUBT
	Syntax
	Usage
	Example

	7.7 Miscellaneous directives
	7.7.1 ALIGN
	Syntax
	Usage
	Examples

	7.7.2 AREA
	Syntax
	Usage
	Example

	7.7.3 CODE16 and CODE32
	Syntax
	Usage
	Example

	7.7.4 END
	Syntax
	Usage

	7.7.5 ENTRY
	Syntax
	Usage
	Example

	7.7.6 EQU
	Syntax
	Usage
	Examples

	7.7.7 EXPORT or GLOBAL
	Syntax
	Usage
	Example

	7.7.8 EXTERN
	Syntax
	Usage
	Example

	7.7.9 GET or INCLUDE
	Syntax
	Usage
	Example

	7.7.10 GLOBAL
	7.7.11 IMPORT
	Syntax
	Usage

	7.7.12 INCBIN
	Syntax
	Usage
	Example

	7.7.13 INCLUDE
	7.7.14 KEEP
	Syntax
	Usage
	Example

	7.7.15 NOFP
	Syntax
	Usage

	7.7.16 REQUIRE
	Syntax
	Usage

	7.7.17 REQUIRE8 and PRESERVE8
	Syntax
	Usage

	7.7.18 RN
	Syntax
	Usage
	Examples

	7.7.19 ROUT
	Syntax
	Usage
	Example

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Symbols

