

Contents
5. On-chip Bus ... 5-1

5.1. 實驗目的 ...5-1
5.2. 實驗原理 ...5-1

5.2.1. Overview of the AMBA specification.................................5-1
5.2.2. Introducing the AMBA AHB ..5-2
5.2.3. AMBA AHB signal list ...5-3
5.2.4. The ARM-based system overview....................................5-6

5.3. 引導實驗 ...5-8
5.3.1. 實驗步驟 ...5-11

5.4. 實驗要求 ...5-17
5.5. 問題與討論 ..5-17
5.6. 參考文件及網頁...5-18

On-Chip Bus

SOC Lab Material 5-1

5. On-chip Bus

5.1. 實驗目的

 To introduce the interface design conceptually. Study the communication
between FPGA on logic module and ARM processor on core module. We will
introduce the ARM bus in detail.

5.2. 實驗原理

5.2.1. Overview of the AMBA specification

The Advanced Microcontroller Bus Architecture (AMBA) specification defines
an on-chip communications standard for designing high-performance
embedded microcontrollers.

Three distinct buses are defined within the AMBA specification:

 The Advanced High-performance Bus (AHB)
 The Advanced System Bus (ASB)
 The Advanced Peripheral Bus (APB).

AMBA AHB implements the features required for high-performance, high clock
frequency systems including:

 burst transfers
 split transactions
 single-cycle bus master handover
 single-clock edge operation
 non-tristate implementation
 wider data bus configurations (64/128 bits).

The APB is part of the AMBA hierarchy of buses and is optimized for minimal
power consumption and reduced interface complexity. The AMBA APB
appears as a local secondary bus that is encapsulated as a single AHB or
ASB slave device. APB provides a low-power extension to the system bus
which builds on AHB or ASB signals directly. We show the typical AMBA
system in Figure 1

On-chip Bus

SOC Lab Material 5-2

Figure 1 A typical AMBA system

5.2.2. Introducing the AMBA AHB

A typical AMBA AHB system design contains the following components:

• AHB master
A bus master is able to initiate read and write operations by providing an
address and control information. Only one bus master is allowed to actively
use the bus at any one time.

• AHB slave
A bus slave responds to a read or write operation within a given address-
space range. The bus slave signals back to the active master the success,
failure or waiting of the data transfer.

• AHB arbiter
The bus arbiter ensures that only one bus master at a time is allowed to
initiate data transfers. Even though the arbitration protocol is fixed, any
arbitration algorithm, such as highest priority or fair access can be
implemented depending on the application requirements. An AHB would
include only one arbiter, although this would be trivial in single bus master
systems.

• AHB decoder
The AHB decoder is used to decode the address of each transfer and provide
a select signal for the slave that is involved in the transfer. A single centralized
decoder is required in all AHB implementations.
We only introduce AHB in detail here. If you have any interested in studying
ASB and APB, you can refer to ARM standard.

On-Chip Bus

SOC Lab Material 5-3

5.2.3. AMBA AHB signal list

This section contains an overview of the AMBA AHB signals (see Table 1). A
full description of each of the signals can be found in later sections of this
document. All signals are prefixed with the letter H, ensuring that the AHB
signals are differentiated from other similarly named signals in a system
design.

Table 1 AMBA AHB signals
Name Source Description
HCLK Clock source This clock times all bus transfers.
Bus clock All signal timings are related to the

rising edge of HCLK.
HRESETn Reset controller Reset controller The bus reset
Reset signal is active LOW and is used to

reset the system and the bus. This
is the only active LOW signal.

HADDR[31:0] Master The 32-bit system address bus.
Address bus
HTRANS[1:0] Master Indicates the type of the current
Transfer type transfer, which can be

NONSEQUENTIAL, SEQUENTIAL,
IDLE or BUSY.

HWRITE Master When HIGH this signal indicates a
Transfer direction write transfer and when LOW a read

transfer.
HSIZE[2:0] Master Indicates the size of the transfer,
Transfer size which is typically byte (8-bit),

halfword (16-bit) or word (32-bit).
The protocol allows for larger
transfer sizes up to a maximum of
1024 bits.

HBURST[2:0] Master Indicates if the transfer forms part a
Burst type burst. Four, eight and sixteen beat

bursts are supported and the burst
may be either incrementing or
wrapping.

HPROT[3:0] Master The protection control signals
Protection control provide additional information about

a bus access and are primarily
intended for use by any module that
wishes to implement some level of
protection. The signals indicate if the
transfer is an opcode fetch or data
access, as well as if the transfer is a
privileged mode access or user
mode access. For bus masters with
a memory management unit these
signals also indicate whether the
current access is cacheable or
bufferable.

HWDATA[31:0] Master The write data bus is used to
Write data bus transfer data from the master to the

bus slaves during write operations.
A minimum data bus width of 32
bits

On-chip Bus

SOC Lab Material 5-4

is recommended. However, this
may easily be extended to allow for
higher bandwidth operation.

HSELx Decoder Each AHB slave has its own slave
Slave select select signal and this signal indicates

that the current transfer is intended
for the selected slave. This signal is

simply a combinatorial decode of the
address bus.

HRDATA[31:0] Slave The read data bus is used to transfer
Read data bus data from bus slaves to the bus

master during read operations. A
minimum data bus width of 32 bits
is recommended. However, this
may easily be extended to allow for
higher bandwidth operation.

HREADY Slave When HIGH the HREADY signal
Transfer done indicates that a transfer has finished

on the bus. This signal may be
driven LOW to extend a transfer.
Note: Slaves on the bus require
HREADY as both an input and an
output signal.

HRESP[1:0] Slave The transfer response provides
Transfer response additional information on the status of

a transfer. Four different responses
are provided, OKAY, ERROR,
RETRY and SPLIT.

On-Chip Bus

SOC Lab Material 5-5

AMBA AHB also has a number of signals required to support multiple bus
master operation (see Table 2). Many of these arbitration signals are
dedicated point to point links and in Table 2 the suffix x indicates the signal is
from module X. For example there will be a number of HBUSREQx signals in
a system, such as HBUSREQarm, HBUSREQdma and HBUSREQtic.

Table 2 Arbitration signals

Name Source Description
HBUSREQx Master A signal from bus master x to the
Bus request bus arbiter which indicates that the

bus master requires the bus. There
is an HBUSREQx signal for each bus
master in the system, up to a
maximum of 16 bus masters.

HLOCKx Master When HIGH this signal indicates that
Locked transfers the master requires locked access to

the bus and no other master should
be granted the bus until this signal is
LOW.

HGRANTx Arbiter This signal indicates that bus master
Bus grant x is currently the highest priority

master. Ownership of the
address/control signals changes at
the end of a transfer when HREADY
is HIGH, so a master gets access to
the bus when both HREADY and
HGRANTx are HIGH.

HMASTER[3:0] Arbiter These signals from the arbiter
Master number indicate which bus master is

currently performing a transfer and is
used by the slaves which support
SPLIT transfers to determine which
master is attempting an access. The
timing of HMASTER is aligned with
the timing of the address and control
signals.

HMASTLOCK Arbiter Indicates that the current master is
Locked sequence performing a locked sequence of

transfers. This signal has the same
timing as the HMASTER signal.

HSPLITx[15:0] Slave(SPILIT capable) This 16-bit split bus is used by a
Split completion request slave to indicate to the arbiter which

bus masters should be allowed to re-
attempt a split transaction. Each bit
of this split bus corresponds to a
single bus master.

On-chip Bus

SOC Lab Material 5-6

5.2.4. The ARM-based system overview

5.2.4.1. AHB bus slave Interface

To see Figure 2, we can use section 5.2.3 AMBA AHB signal list to
understand the communication between AHB bus slave and other component
of the ARM system.

Figure 2 AHB bus slave interface

5.2.4.2. AHB bus master Interface

On-Chip Bus

SOC Lab Material 5-7

Figure 3 AHB bus master interface

5.2.4.3. The AHB Arbiter Interface

Figure 4 AHB arbiter interface diagram

5.2.4.4. The AHB Decoder Interface

Figure 5 AHB decoder interface diagram

On-chip Bus

SOC Lab Material 5-8

Figure 6 A typical address decoding system and the slave select signals

If we want to add our design, we can download our HDL code into the FPGA.
We can think that it is a ARM bus slave in the Arm-based system. In our
experiment, we will explain how to add our design in detail.

5.3. 引導實驗

This program does the following tasks:
1. Determines DRAM size on the core module and sets up the system

controller.
2. Checks that the logic module is present in the AP expansion position.
3. Reports module information.
4. Sets the logic module clock frequencies.
5. Tests SSRAM for word, halfword, and byte accesses.
6. Flashe the LEDs.
7. Remains in a loop that displays the switch values on the LEDs.

We can divide our program into two parts: software and hardware

1. Software:

There are four source files in software:
(1) logic.c: The main C code, Do above description.
(2) logic.h: Defines, Structures, Routines used & defined in the logic

demo program.
(3) platform.h: Integrator address map.
(4) rw_support.s: Assembler functions for SSRAM testing.

2. Hardware:

On-Chip Bus

SOC Lab Material 5-9

Table 3 is the Hardware description

Table 3 Hardware description

File Description
ASBAHBTop
AHBAHBTop

These files are the top-level HDL that instantiate all of the
high-speed peripherals , decoder , and all necessary
support and glue logic to make a working system . The
files are named so that , for example , ASBAHBTop.v
is the top level for AHB peripherals connected to an ASB
system bus

ASB2AHB

This is the bridge required to connect AHB peripherals to
an ASB integrator system

AHBDecoder

The decoder block provides the high-speed peripherals
with select lines. These are generated from the address
lines and the module ID (position in stack) signals from the
motherboard. The decoder blocks also contain the default
slave peripheral to simplify the example structure. The
integrator family of boards uses a distributed address
decoding system

AHBMuxS2M

This is the AHB multiplexor that connects the read data
buses from all of the slaves to the AHB masters(s)

AHBZBTRAM

High-speed peripherals require that SSRAM controller
block supports Word, halfword, and byte operations to the
SSRAM on the logic module

AHB2APB

This is the bridge blocks required to connect APB
peripherals the high-speed AMBA AHB bus. They produce
the peripheral select signals for each of the APB
peripherals.

AHBAPBSys

The components required for an APB system are
instantiated in this block. These include the bridge and the
APB peripherals. This file also multiplexes the APB
peripheral read buses and concatenates the interrupt
sources to feed into the interrupt controller peripheral

APBRegs

The AOB register peripheral provides memory mapped
registers that you can use to :
 Configure the two clock generators
 Write to the user LEDs
 Read the user switch inputs.
It also latches the pressing of the push button to generate
an expansion interrupt

APBlntcon

The APB interrupt controller contains all of the standard
interrupt controller registers and has an input port for four
APB interrupts. Four software interrupts are implemented

This program only tells us a concept how to use the ARM processor on CM to
communicate with the FPGA on LM. And if we want to add our implementation,
you can refer to Figure 7.

On-chip Bus

SOC Lab Material 5-10

Figure 7 The file structure

Logic module

Memory map

Core SDRAM Other
Modules

AHB

AHBAHBTop

AHBDecoder

AHBMuxS2M
AHBZBTRAM

ZBTSRAM

MYIP
AHB
AHB2APB

APBlntcon
APB

AHBAPBSys

APBRegs

On-Chip Bus

SOC Lab Material 5-11

The following table shows the mapping of the logic module registers.

Reference: DUI146B_LM600_UG.pdf

5.3.1. 實驗步驟

1. Create new project for Xilinx demo board:
(a) Device Family: VirtexE
(b) Device: xcv2000e
(c) Package: fg680
(d) Speed Grade: -6
(e) Design Flow: XST Verilog

2. Add verilog file to this project. And check no errors or warnings were
occurred.

On-chip Bus

SOC Lab Material 5-12

3. Add example2.ucf file to this project, and associate example2.ucf with
he AHBAHBTop module that it affects.

4. Select Top module, and Double click Generate Programming File,
your will generate top.bit file. Rename top.bit to example2.bit.

On-Chip Bus

SOC Lab Material 5-13

5. Copy example2.bit file to progcrd.exe directory from your project

folder.

Download flow

1. Connect ARM MultiICE onto LM. (Be SURE to power down
first!! …$$)

2. Set the LM in Config Mode by shorting the CFGLNK jumper on the LM
board. The CFGLED on the LM is lit as an indication for configure
mode. LM’s FPGA can only be detected by MultiICE Server in
configure mode. Yet CM cannot be found by MultiICE Server while
LM is in configure mode.

CFGLNK(J11)

3. Auto-config again in the MultiICE Server program. Remember to auto-

configure again each time the MultiICE link is modified.

4. Execute progcards.exe to download the bitstream to the FPGA. This
download program only searches for the .brd files in the same
directory. If only one .brd file exists, the downloading would
start directly without any prompt.

5. Download the hardware binary code on FPGA. The hardware binary

code (*.bit) can synthesize by EDA tools like Altera or Xilinx.

6. Execute the progcrd.exe, it will open a window like Figure 8. Choice 6

On-chip Bus

SOC Lab Material 5-14

Figure 8 A window that execute progcrd.exe

7. Then it will process three steps. When the process is finished, it

means that the ARM-bus interface has download to FPGA. See
Figure 9.

Step1: download lmxcv600e_72c_xcv2000e_via_reva_build0.bit to

FPGA.

Step2: download lmxcv600e_72c_xcv2000e_example2_ahb.bit to
flash memory.

Step3: verifying the hardware in flash memory, checking the hardware
is our download code.

On-Chip Bus

SOC Lab Material 5-15

Figure 9 ARM bus interface download to FPGA

8. Start CodeWarrior IDE. Open the sw.mcp. The project include the
software code that describing before. See Figure 10.

Figure 10 Software code contained in SW.map

9. Hit run (Figure 10, the bottom with red circle), then it will start the
AXD debugger (Figure 11).

On-chip Bus

SOC Lab Material 5-16

Figure 11 AXD debugger

You can find it will do some testing for AMBA interface by using software:
1. testing SDRAM size.
2. check that LM0 is present.
3. turn off all LEDS.
4. print out some system information.
5. set up LM clock frequencies.
6. flash the LEDs, then Mirror the switches to the LEDs.

At finally, you can try to adjust the switch, and see the change between
LEDs.

Hint：DUI146B_LM600_UG.pdf(Chapter 6)

On-Chip Bus

SOC Lab Material 5-17

5.4. 實驗要求

 To trace the hardware code and software code, indicate that software
how to communicate with hardware using the AMBA interface.
Note：
Clock control assignment

1. Before writing to the oscillator registers, you must unlock them by writing

the value 0x0000A05F to the LM_LOCK register. After writing the oscillator
register, relock them by writing any value other than 0x0000A05F to the
LM_LOCK register.

2. SR
VMhzfrequence

⋅+
+

=
)2]0:6[(

)8]0:8[(48

where

5.5. 問題與討論

1. If we want to design an accumulator (1, 2, 3…), how could you do to
implement it using the scratch code?

2. If we want to design a hardware using FPGA, how could you do to add
your code to the scratch code and debugger it?

On-chip Bus

SOC Lab Material 5-18

3. To study the AMBA bus standard, try to design a simple AMBA interface.

5.6. 參考文件及網頁

 AMBA AHB standard 2.0.
 INTERGRATOR/LM-XCV600E+INTERGRATOR/LM-EP20K600E+ USER
GUIDE.

 INTERGRATOR/AP USER GUIDE
 INTERGRATOR/CM9xOT INTERGRATOR/CM7xOT USER GUIDE

