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Abstract

This paper describes a new software solution for
DCT-based JPEG image compression using a 32-bit
MCU with parallel execution (dual issue).

Taking constraints of the MCU hardware resources
into consideration, various fast algorithms for DCT are
investigated. As a result, it is concluded that the optimal
fast algorithm for MCUs capable of parallel execution
differs from the optimal algorithm for MCUs which do
not support parallel execution.

Comparing the number of JPEG image compression
cycles using software on MCUs with and without parallel
execution capability, it is concluded that the processing
speed of the latter type of MCU is approximately 30%
higher than the former type. When this former
processing speed is applied to a 640 x 480 (VGA-size)
YCbCr image in 4:2:2 format, compression can be
performed in about 0.15 seconds (using a 100MHz MCU

with parallel execution capability).

1. Introduction

Due to dramatic recent advances in microcontroller
unit (MCU) technology, software solutions for image
compression complying with the Joint Photographic
Expert Group’s (JPEG) standard [1] have become
feasible [2]. At the same time, digital still cameras using
JPEG image compression need to handle ever bigger
images. Accordingly, faster JPEG software solutions are
still required.

JPEG algorithms comprise two main processes,
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Huffman coding and DCT (Discrete Cosine Transform)
[3]. The main function of Huffman coding is the table
reference and conditional branch based on the value
referred to, neither of which can be processed at high
speed with conventional MCUs. In contrast, the DCT
process is a series of straightforward operations with no
branches, and a number of fast algorithms have already
been developed [4-7]. Thus, great improvements in
processing speed are attainable by improving the
implementation of the algorithms based on the type of
MCU used.

Parallel execution techniques, which are very
common in PC and EWS processors, have begun to be
applied to embedded MCUs [8]. As one of the techniques
to realize faster DCTs, it is worth investigating the
adoption of MCUs capable of parallel execution and
optimal fast algorithms for DCT to suit the type of MCU.

To implement 8-point DCT using an MCU, it is
necessary to determine the optimal solution, taking into
consideration the constraints of the MCU hardware
resources, such as whether the MCU is equipped with a
multiplier and how many registers are available. In other
words, no optimal solutions can be determined based
only on the criteria. These criteria include the complexity
of computation and the numbers of multiplication,
addition and subtraction operations, described in papers
related to fast algorithms for DCT [5, 6].

This paper focuses on a software solution for JPEG
image compression using an embedded MCU with RISC
(Reduced Instruction Set Computer) architecture. The
authors’ attention was directed to DCT as a critical

factor in achieving high-speed processing, and the
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processing speed of fast algorithms for DCT was
evaluated taking into account the constraints of the MCU
hardware resources. Overviews of DCT and the major
fast algorithms are described in Chapter 2. Chapter 3
describes an evaluation of the processing speeds of these
fast algorithms executed on a conventional MCU not
supporting parallel execution. The evaluation discusses
the effectiveness of the fast algorithms’ technique for
replacing multiplication operations with addition
operations. In Chapter 4, the processing speed achieved
by the dual issue of instructions under the limited
conditions in Chapter 3 is evaluated. In Chapter 5, the
performance of JPEG compression using an MCU
equipped with dual issue capability is evaluated based on

the discussions in Chapters 3 and 4.

2. Fast algorithms for DCT

This chapter describes the definition of DCT and the
main fast algorithms for DCT used for the evaluation in

this paper.

2.1 DCT

In the JPEG standard, two-dimensional DCT is
executed for each block of 8 x 8 pixels.

One-dimensional DCT at N points is defined as

follows.
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where

f(x): Input at each point
F(u): Transform value at N points

For two-dimensional DCT, the input image is divided
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into blocks of N x N pixels (8 x 8 pixels for JPEG). The
two-dimensional DCT transforms the data of each f (x, y)
into the N x N transform value, F (u, v).

Here, N x N two-dimensional DCT is defined as

follows.
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Two-dimensional DCT can be implemented by a series

of one-dimensional DCT processes [3]. A great
improvement in computational speed can be obtained by
this reduction to a one-dimensional transform. This is
proven by the transformation of Equation (2) into

Equation (3) as follows.

F(u,v)
ot ot {5 )

3

The inner summation of Equation (3) presents N-point
one-dimensional DCT shown in Equation (1) and
corresponds to the one-dimensional DCT in the X
direction, whereas the outer summation of Equation (3)
corresponds to the one-dimensional DCT in the Y
direction. Therefore, two-dimensional DCT is
implemented by means of the following steps.

1) Executing the multiply-add operations, treating eight
pixels arranged in a row or column as in single
calculation unit, and writing the results to the row or
column, accordingly.

2) Executing an operation that repeats the one-
dimensional DCT operation eight times in a single
direction.

3) Finally, executing the same operation using the

obtained results in the other direction.
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2.2 Fast algorithms

Among the various fast algorithms for DCT currently
proposed, this section describes the four major
algorithms used in this evaluation.

The first fast algorithm was proposed by Chen [4].
Chen's algorithm is evaluated in this paper because it has
an excellent regular structure and is also suitable for
using  multiply-add  instructions. However, its
disadvantage is that it requires as many as 16
multiplication operations.

Hou [5] proposed a recursive algorithm. Hou's
algorithm is regular, except for the last stage, and needs
12 multiplications and 29 additions. Although the
number of multiplication and addition operations is the
same as that of other fast algorithms [9, 10], this
algorithm has the advantage of its excellent regularity
and the smaller number of constants necessary for the
multiplication operations. Thus, this algorithm is selected
for the evaluation described in this paper. To evaluate
this algorithm, a non-recursive program was created to
avoid the overhead of function calls.

The algorithm proposed by Loffler [6] involves only 11
multiplications. The number of addition is 29, which is
the same as that of other algorithms, including Hou's.

The algorithm proposed by Arai [7] has the feature of
simplifying the DCT processing by multiplying simple
scalings with the DCT results. This algorithm requires
only five multiplications and 29 additions. Since six
results out of all the DCT results are multiplied with the
simple scalings, the total number of multiplication
operations required is the same as that of Loeffler's
algorithm. However, the six multiplications can be
omitted by multiplying the simple scalings by the
quantization coefficient, utilizing the fact that JPEG
executes quantization after DCT. In spite of this
advantage, Arai's algorithm fails to avoid irregular data
flows, resulting

in problems with computational

accuracy.

3. Evaluations of fast algorithms
implemented on an MCU

3.1 Problems implementing fast algorithms on an
MCU

When implementing a fast algorithm on an embedded
MCTU, the constraints of the MCU’s hardware resources
must be considered. Therefore, it is necessary to select an
optimal fast algorithm to match the MCU's hardware
resources.

The following are the MCU hardware resources which
are critical for 8-point DCT.

(a) Whethér the MCU is equipped with a multiplier

(b) Whether instructions related to multiply-add and
accumulator operations are supported

(¢) The number of general-purpose registers

(d) The memory access speed

In the case of an MCU without a multiplier, for
example, the number of cycles necessary for executing a
multiplication operation is at least 10 times the number
necessary for an addition operation. Therefore, an
algorithm with a reduced number of multiplicétion
operations is advantageous even if the algorithm needs a
larger number of addition operations. On the othex} hand,
recent MCUs equipped with multipliers can execute
multiplication operations using the same number of
cycles required for additions. This means that utilizing
the registers effectively by making the most of: the
smaller number of points of the 8-point DCT is more
important than reducing the number of multiplicéfions.
That is to say, in order to minimize the use of memofy by
utilizing the registers effectively, the amount of data tb be
retained during computing and the number of constants
necessary for multiplication are more important fhan
reducing the number of multiplication operations, as far

as the processing speed is concerned.
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3.2 Hardware resources of the MCU

The evaluation in this paper was performed using a
32-bit MCU with RISC architecture, equipped with the
hardware resources listed in Table 1. This is considered
to be appropriate since recent RISC type MCUs are
designed to support the implementation of simple
functions for digital signal processing. The MCU used for
this evaluation was capable of executing at least 16-bit x
16-bit multiplication and multiply-add instructions in a
single cycle, just as it could execute addition instructions.

It was also capable of executing the rounding and data

transfer instructions for the accumulator in a single cycle.

Although there are 16 registers in the 32-bit width, for
the evaluation 15 registers were used for coding
programs and one register was assigned as a stack
pointer. For the memory access speed, it was assumed
that data could be read in a single cycle with no cache

misses.

Table 1 MCU hardware resources for evaluation

Software JPEG for a 32-bit MCU with Dual Issue

Multiplier 16-bit x 16-bit or more

Instructions for | Instructions for multiply-add and data

multiplier- transfer between accumulator and general

related purpose registers

operations Execution of multiply-add operation in
one cycle

General 16 registers in the 32-bit width. One

purpose register | register for stack pointer

Cache Mounted

Memory access | Data can be read in one cycle

speed

3.3 Results of fast algorithm evaluations

The four main algorithms mentioned in Section 2.2
were implemented using assembly language and the
resulting processing speeds were evaluated, taking into
account the constrains of the hardware resources
described in Section 3.2. As explained in Section 2.1, the
two-dimensional DCT can be divided into a series of one-
dimensional DCTs, and the evaluation was based on the
8-point orfe-dimensional DCT. The numbers of steps each
fast algorifhm required to execute an 8-point one-

dimensional DCT are listed in Table 2.
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As seen in Table 2, the algorithm proposed by Chen is
effective for DCT when using an MCU equipped with a
multiplier and capable of processing multiply-add
instructions. Since this algorithm needs only one
multiplication operation to per DCT result, no
deterioration of computing accuracy occurs. The reasons
why Chen's algorithm is more efficient than the other
algorithms are:

(a) The four multiply-add operations (making a total of
seven addition and multiplication operations)
appearing in Chen's algorithm can be executed with
only four multiply-add instructions, and thus it
appears that no additions are necessary.

(b) In contrast, to compute a + b and a - b which are
often used in algorithms other than Chen's, it is
necessary to transfer the value of "a" to another
register, and thus three instructions are necessary to
execute what appear to be only two operations (i.e.,

one addition and one subtraction).

Table 2 Number of steps necessary for 8-point

one-dimensional DCT

Fast algorithm | Number of steps
Chen 76
Hou 99
Loeffler ) 117
Arai 78

4. Realizing DCT using parallel execution

This chapter discusses whether the selection of optimal
fast algorithms for DCT is affected when parallel
execution, a new computing method, is added under the

hardware resource constraints described in Chapter 3.

4.1 Definition of parallel execution

The evaluation was performed based on the
assumptions that parallel execution would not be
possible for all the instruction combinations, but that it
would be possible to execute instructions such as

multiplication, accumulator-related operations, load,
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store, and branch operations only once in a single step

(executable on one side only). This took into account the

size limitations of the hardware required to realize the

embedded MCU at a low price. The conditions applying
for parallel execution are as follows.

1) For instructions such as arithmetic operations, logical
operations, transfer, shift and null operation, two
instructions could be executed in parallel.

2) Instructions such as multiplication, accumulator-
related operations, load, store and branch are
executed only on one side. These instructions could be
executed in parallel only when they occur in
combination with other instructions compatible with
parallel execution.

3) When two instructions executed in parallel use the
same register, the copy of the register value is assigned

to both of these instructions in parallel.

4.2 Problems using parallel execution

When implementing the fast algorithms evaluated in
Chapter 3 based on the conditions for parallel execution
described in Section 4.1, the following two computations
are affected.

1) Computinga+banda-b

When computing a + b and a - b, which are frequently
used in fast algorithms, the value of " a " must be
transferred once to another register when rno parallel
execution is used, so three instructions are required, as
mentioned in Section 3.3. In contrast, when a + b and a -
b are executed in parallel, a copy of the register value is
given to both instructions as described in Section 4.1, and
a+ b and a- b are executed in one stepasb+a|a-b
(where || indicates the parallel execution of instructions
on the left and right). Thus, parallel execution cah reduce
the number of steps necessary for computing a + b and a
- b from three steps to one.

2) Multiply-add computations
In contrast to 1), instructions such as multiplication,

multiply-add and accumulator-related operations can be

executed only once in one step. For the effective use of

these instructions, therefore, instructions such as
arithmetic operations and transfers must be executed

simultaneously.

4.3 Results of fast algorithm evaluations using

parallel execution

The fast algorithms in Section 2.2 were implemented
in assembly language in the same manner as described in
Section 3.3 and their processing speeds were evaluated,
taking into account the influence of parallel execution
described in Section 4.2. The numbers of steps each fast
algorithm required to perform 8-point one-dimensional
DCT are given in Table 3.

As seen in Table 3, the algorithms proposed by Arai
and Chen are advantageous for DCT using an MCU with
dual issue. The reason why Arai's algorithm shows better
performance than Chen's, in contrast to the results given
in Section 3.3, include its highly efficient a + banda-b
computations. In addition, Arai's algorithm requires
only four constants for multiplication and a small
number of registers.

The advantages of Arai's algorithm are quite effective
in realizing two-dimensional DCT by using one-
dimensional DCT. To implement two-dimensional DCT,
as mentioned in Section 2.1, a total of sixteen one-
dimensional DCTs are performed in both vertical and
horizontal directions (eight each). The features of Arai's
algorithm allow the four constants necessary for
multiplication to be pre-assigned to the registers and
these . values shared for the sixteen one-dimensional
DCTs. As a result, the number of steps necessary to
execute Arai's algorithm in Table 3 could be reduced
from 48 steps to 45.

The comparison results of Table 2 and Table 3 are
shown in Figure 1. DCT with an MCU which did not
support parallel execution but was equipped with a
multiplier provided efficient performance using Chen's

algorithm.
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Once the parallel execution function was added,
however, Chen's algorithm showed the lowest ratio of
reduction of number of steps. This was due to the fact
that Chen's algorithm cannot take full advantage of the
effectiveness of parallel execution because of a bottleneck
of multiply-add instructions.

A comparison of the results given in Table 2 showed
that the DCT speed could be increased by approximately,
40% by the addition of parallel execution capability.

Table 3 Number of steps required for 8-point

one-dimensional DCT (using parallel execution)

Fast algorithm Number of steps
Chen 53
Hou 6S
Loeffler 77
Arai 48

WithM CU notsupporting parallel execution
120 With M CU supporting parallel execution
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Figure 1 Effects of parallel execution on DCT

5. Evaluation of the JPEG software
solution using parallel execution

Figure 2 shows the result of speed performance
obtained using MCUs with and without parallel
execution capability, when running JPEG programs.

Arai’s and Chen’s algorithms were adopted to

Software JPEG for a 32-bit MCU with Dual Issue
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implement two-dimensional DCT: Arai’s for the former
type of MCU (parallel) and Chen’s for the latter type
(non-parallel). These algorithms were highly evaluated
for their respective type of MCU in Chapters 3 and 4.
The digital standard picture for television system tests of
the Institute of Television Engineers [11] was used for the
evaluation. Original RGB data with a pixel size of 755 x
483 was converted into data with a pixel size of 752 x 480
with a sampling ratio of Y:Cb:Cr = 4:2:2, and the
number of cycles from YCbCr to JPEG file generation

was measured.

With MCU not supporting parallel execution
With MCU supporting parallel execution
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chart4

charts
ITE Television System Test Chart

-Digital 8 tandard Picture-

chartl chart2 chart3

Data:

1. ITE Color Matching Chart (a girl with a carnation)
2. ITE Picture (a girl with a hair band)

3. ITE Picture (weather forecast)

4. Villages of Switzerland

5. Tulips

Image size: 752 x 480

Image format: YCbCr

ITE: The Institute of Television Engineers of Japan

Figure 2 Performance comparison of execution time

The processing speeds of JPEG programs on a
conventional MCU without parallel execution and on an
MCU with parallel execution were compared. As a result,
the processing speed of the former type of MCU was
approximately 22-26 megacycles, whereas the data could

be compressed on the latter type of MCU within
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approximately 14-17 megacycles. This means that JPEG
program on the latter type of MCU can be realized 35 %
faster than on the former type.

This processing speed is equivalent to the speed at
which a VGA-size image with a sampling ratio of
Y:Ch:Cr = 4:2:2 could be compressed within 0.15
seconds (when a 100MHz MCU with dual issue function

is used).

6. Conclusion

In order to achieve high-speed JPEG programs, fast
algorithms for DCT were evaluated using embedded
MCUs with dual issue.

To realize an 8-point DCT which is used in JPEG on
an embedded MCU, an optimal solution must be
determined, which takes into account the constraints of
the MCU's hardware resources, including whether it has
a multiplier and the number of registers available.
Therefore, in this paper the performance of each
algorithm was evaluated quantitatively based on the
number of steps actually required given the MCU
hardware resource constraints, instead of the numbers of
multiplication and addition operations which have
conventionally been used as criteria for evaluating the
performance of fast algorithms.

To evaluate fast algorithms, four major fast algorithms
were implemented in assembly language and the number
of steps actually required was measured using MCUs
with and without parallel execution capability.

As a result, the fast algorithm by Chen, which is
characterized for its capability for effective utilization of
multiply-add instructions, was found to be most suitable
for 8-point DCT when a conventional MCU with no
parallel execution was used. In contrast, when using an
MCU with parallel execution capability, the algorithm
proposed by Arai was found to be the most advantageous.
It was therefore shown that optimal fast algorithms for
DCT differ according to the constraints and functibns of

the MCU used.

By evaluating the speed performance of JPEG
programs on MCUs with and without parallel execution
capability, it was proved that a JPEG program could be
processed 35% faster on the latter type of MCU than on
the former type. By applying this performance to
compression, VGA-size images with a sampling ratio of
Y:Cb:Cr=4:2:2 could be compressed within 0.15 seconds
when using a 100MHz MCU.
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