
JTAG logic configuration utilities

JTAGPROG-0000-PRIV-DOC-D Open access Page 1 of 24

JTAG logic configuration utilities
Development Systems

Document number: JTAGPROG-0000-PRIV-DOC-D

Date of Issue: 29 August, 2001

Author: Trevor Howlett

Authorised by:

© Copyright ARM Limited 1998-2001. All rights reserved.

Abstract
This document describes a suite of utilities that have been written to allow programming of configurable logic
and flash memory devices on development boards

Keywords
JTAG, Multi-ICE, Programming, Configuration, Download, Flash, FPGA, PLD

JTAG logic configuration utilities

JTAGPROG-0000-PRIV-DOC-D Open access Page 2 of 24

Contents

1 ABOUT THIS DOCUMENT 4

1.1 Change control 4
1.1.1 Current status and anticipated changes 4
1.1.2 Change history 4

1.2 References 4

1.3 Terms and abbreviations 4

2 INTRODUCTION 5

2.1 Supported devices 5

2.2 Batch programming 5

2.3 Multi-ICE 6

2.4 The utilities 6

2.5 Version history 7

3 FPGA PROGRAMMING (XILINX) 8

3.1 Description 8

3.2 Syntax 8

3.3 Performance 8

3.4 Notes 8
3.4.1 4000-series FPGAs 8
3.4.2 Virtex and Virtex E FPGAs 9

4 PLD PROGRAMMING 10

4.1 Description 10

4.2 Syntax 10

4.3 Performance 10

4.4 Notes 10

5 BOUNDARY SCAN FLASH PROGRAMMING 11

5.1 Description 11

JTAG logic configuration utilities

JTAGPROG-0000-PRIV-DOC-D Open access Page 3 of 24

5.2 Requirements 11

5.3 Syntax 11

5.4 Options 11

5.5 Writing a flash description file 12
5.5.1 Flash configuration 13
5.5.2 The Boundary Scan Chain Description 14
5.5.3 Notes 15

5.6 Test mode 16

5.7 Access speed 16

5.8 Testing the scan chain 17

6 PROGCARDS 18

6.1 Description 18

6.2 Syntax 18

6.3 Operation 18

6.4 Writing a board file 18
6.4.1 An example board file 19
6.4.2 General comments 20
6.4.3 Supported programming methods 21

6.4.3.1 FPGA download 21
6.4.3.2 Virtex / Virtex E download 21
6.4.3.3 PLD download 21
6.4.3.4 Boundary scan flash programming 21
6.4.3.5 Indirect flash programming (for Integrator platforms) 22

6.4.4 Programming tips 24

JTAG logic configuration utilities

JTAGPROG-0000-PRIV-DOC-D Open access Page 4 of 24

1 ABOUT THIS DOCUMENT

1.1 Change control

1.1.1 Current status and anticipated changes

1.1.2 Change history

Issue Date By Change

A01 22 July, 1999 Jonathan Travers First draft

A02 29 July, 1999 Jonathan Travers Updated for 1.81, added revision history

A 3 August, 1999 Jonathan Travers Minor changes and additions

B 14 August, 2000 Trevor Howlett Updated for 2.00

C 14 May, 2001 Trevor Howlett Updated for 2.02

D 29 August, 2001 Trevor Howlett Updated for 2.10

1.2 References

This document refers to the following documents.

Ref Doc No Author(s) Title

1.3 Terms and abbreviations

This document uses the following terms and abbreviations.

Term Meaning

JTAG logic configuration utilities

JTAGPROG-0000-PRIV-DOC-D Open access Page 5 of 24

2 INTRODUCTION

This document describes a suite of utilities that have been written to allow programming of configurable logic and
flash memory devices on development boards. All the utilities communicate with the devices using JTAG, through
ARM’s Multi-ICE interface unit. The utilities are intended to provide a complete in-system programming solution,
capable of directly programming common devices and also writing configurations to flash memories that are used
to configure logic devices on power-up.

2.1 Supported devices

• FPGAs – These are large configurable logic devices. The devices are based on SRAM technology and are
therefore volatile. Configurations can be loaded directly using JTAG – the utilities currently support Xilinx 4000
series, Virtex FPGAs.

• PLDs – These are smaller, faster configurable logic devices. They can also be programmed using JTAG, but
are based on non-volatile FLASH technology and will thus retain their configuration permanently. The utilities
support Xilinx 9500 and 9500XL devices, and also some Philips PLDs.

• Flash memory – FPGAs on development boards are usually configured on power-up from some sort of non-
volatile memory device. Utilities are provided for programming Intel and Atmel flash devices that can be used
for this purpose. These devices do not have JTAG interfaces, so indirect programming methods have been
devised that make use of JTAG-capable devices which are connected to the flash chips.

2.2 Batch programming

Since there may be several different devices on any particular development board, a utility (ProgCards) has been
written that supports a flexible scripting system for programming entire sets of devices. All the programming
methods are supported, and the utility also provides a configurable menu system if support for several different
configurations is required.

Example of a configured Multi-ICE server

JTAG logic configuration utilities

JTAGPROG-0000-PRIV-DOC-D Open access Page 6 of 24

2.3 Multi-ICE

All the utilities communicate with devices using JTAG via ARM’s Multi-ICE interface unit. In order for the utilities to
work, the Multi-ICE server must be running and correctly configured. The server window should show a diagram of
the JTAG devices present on the board (see example above). Multi-ICE is capable of auto-detecting most of the
devices supported by the programming suite

Note 1: The server does not have to be running on the same PC as the programming utilities. They all support
remote connection by specifying an optional server name parameter.

Note 2: The programming utilities require Multi-ICE release 1.4 or above.

2.4 The utilities

Six executables are supplied in the programming suite:–

• FPGA – This utility downloads temporary configurations to Xilinx FPGAs. It is documented in section 3.

• PLD – This utility downloads data from SVF files to PLD devices. It is documented in section 4.

• BSFlash – This utility programs flash devices via boundary scan on a connected device. It is documented in
section 5

• ChainTest – This utility analyses boundary scan chains. It is intended for use when writing description files for
BSFlash. See Section 5.8 for more details.

• ProgCards – This utility provides a scripting engine for all the programming methods described here. The
complete functionality is present in the utility – it does not require the other utilities to run. See section 6 for
more information on ProgCards.

JTAG logic configuration utilities

JTAGPROG-0000-PRIV-DOC-D Open access Page 7 of 24

2.5 Version history

The following table summarises the versions of the programming suite that have been released to date. All the
utilities should report a version number when they are run:-

Date Released Version Number Notes

Before April 1999 No version
number reported

The initial releases of the programming suite supported only Xilinx
95xx PLDs, Xilinx 4000 FPGAs and one indirect flash programming
algorithm.

9 April 1999 Version 1.5 This release contained performance improvements (using new Multi-
ICE features).

9 June 1999 Version 1.6 This release contained the new boundary scan programming utility,
BSFlash. Minor changes were also made to the PLD programmer.

- Version 1.7 This version was for development purposes only and was not released.
If you have a utility that reports this version number, please replace it
with an officially released version.

23 July 1999 Version 1.8 Support for a wide range of new devices, including Xilinx Virtex
FPGAs, Xilinx 95xxXL PLDs and a new indirect flash programming
method (for Intel devices). BSFlash is now integrated into ProgCards.

3 August 1999 Version 1.81 Added support for wildcards and lists of devices in ProgCards board
files.

20 January 2000 Version 1.85 Support added for Intel MCS type.

15 February 2000 Version 1.87 Multi-ICE server version check fixed, programming PLDs with Multi-ICE
release 1.3 would fail with Multi-ICE error 38. Support added for TAP
controllers with more than one device connected to it.

14 August 2000 Version 2.00 Support added to progcards for programming Altera based logic
modules with .rbf images (intelflash/intelflashverify extension).

Board files (.brd) used with this release can now use TAPs numbered
0..n-1 instead of devices numbered 1..n.

PLD programming enhanced to work with Altera 7000AE family.

14 May 2001 Version 2.02 Support added for Logic Modules using Intel Strata Flash, and changes
to allow compatibility with Multi-ICE 2.1.

29 August 2001 Version 2.10 Support added for programming of the AP motherboard system flash.
Also StepnDisplayText and StepnPause added to board file
commands.

JTAG logic configuration utilities

JTAGPROG-0000-PRIV-DOC-D Open access Page 8 of 24

3 FPGA PROGRAMMING (XILINX)

3.1 Description

The ‘FPGA’ utility is provided for downloading temporary configurations to Xilinx FPGAs. It supports all 4000
series and Virtex / Virtex E FPGAs. Configurations downloaded with this program are temporary – they will be lost
if the FPGA PROG pin goes low, or the power is removed.

3.2 Syntax

FPGA <filename> <chainpos> <IR length> [server]

• Filename – specifies the location of the bit file containing the configuration data. These files are generated by
the Xilinx place and route tools. The program will also accept MCS format files (used to program flash and
PROM devices), but will only work with files containing single images stored in ascending order, beginning at
address zero.

• Chainpos – specifies the location of the FPGA device in the Multi-ICE scan chain (note that devices are
numbered from zero)

• IR Length – specifies the JTAG instruction register length for the FPGA, in bits. This is used to distinguish
between 4000-series (IR length = 3) and Virtex FPGAs (IR length = 5).

• Server – (optional) specifies the name of the computer on which the Multi-ICE server is running. If omitted, it
is assumed to be running on the same computer as the utility.

3.3 Performance

Programming time will depend on the size of the device, and the speed of your PC. The program will report
download throughput in kilobytes per second, and the percentage of the file that has been downloaded. For Virtex
FPGAs, the number of configuration frames downloaded is also displayed. In general, a single FPGA download
should take approximately 15 seconds.

3.4 Notes

3.4.1 4000-series FPGAs

• In order to program 4000-series FPGAs, the program needs to be able to control the FPGA’s PROG and INIT
pins. PROG is used to reset and clear the FPGA, and INIT is held low to prevent the device loading a
configuration from any attached memory device. The program assumes that Multi-ICE’s nTRST output is
connected to the PROG pin, and the nSRST output is connected to the INIT pin. Without these connections,
programming will probably not be successful.

• In 4000-series FPGAs, the JTAG pins are available as user IO after configuration. Unless you have
instantiated the BSCAN symbol in your design, JTAG will not be functional after the device configures,
because the scan chain will be broken at the FPGA. It is recommended that you instantiate the BSCAN
symbol in all your designs, and do not use the JTAG pins as IO. If you do not include the BSCAN symbol, the
startup sequence order in the bitgen options becomes very important. You must make sure that making
outputs active is the last step in the startup sequence. If it is not, the steps of the sequence after the outputs
are made active will not take place because they are clocked by TCK, which is disconnected as soon as the
design becomes active. Note that by default, making outputs active is not the last step in the sequence.

JTAG logic configuration utilities

JTAGPROG-0000-PRIV-DOC-D Open access Page 9 of 24

3.4.2 Virtex and Virtex E FPGAs

• Control of PROG and INIT is not required for programming of Virtex FPGAs, although the program will still
assert (take low) nTRST before programming begins. It is advised that nTRST and nSRST are connected as
for 4000-series devices.

• If Multi-ICE’s nTRST signal is not connected to a Virtex device’s PROG pin, the DONE output from the FPGA
will remain high during programming. Download will still work, but no indication will be available on the board
(it is usual for DONE to be connected to an ‘FPGA OK’ LED).

• In the bitgen options for a Virtex FPGA, there is an option to specify the start-up clock used during
configuration. An image written into a configuration PROM will usually have a CCLK start-up clock, but when
downloading via JTAG, the start-up clock should be TCK. In order to avoid the need to build multiple bit files
for each configuration, the FPGA utility contains code to modify this setting as the bit file is downloaded.
Therefore a bit file with CCLK start-up can also be downloaded using the utility.

JTAG logic configuration utilities

JTAGPROG-0000-PRIV-DOC-D Open access Page 10 of 24

4 PLD PROGRAMMING

4.1 Description

The ‘PLD’ utility is provided for writing configurations to PLD devices. The utility is in fact just an interpreter for
serial vector format (SVF) files. This is an industry standard file format for specifying JTAG operations, designed
for exchanging vectors between test equipment. The program has no knowledge of the programming algorithms
for different PLD devices – it merely executes the commands in the SVF file produced by the PLD place and route
tools. The utility has been tested with files produced for Xilinx 9500 and 9500XL devices, Altera MAX AE devices,
and also with some Philips PLDs.

4.2 Syntax

PLD <filename> <chainpos> <IR length> [server]

• Filename – specifies the location of the SVF file containing the configuration data.

• Chainpos – specifies the location of the PLD device in the Multi-ICE scan chain (note that devices are
numbered from zero)

• IR Length – specifies the JTAG instruction register length for the PLD, in bits. Xilinx PLDs have an IR length
of 8, Philips PLDs have an IR length of 10.

• Server – (optional) specifies the name of the computer on which the Multi-ICE server is running. If omitted, it
is assumed to be running on the same computer as the utility.

4.3 Performance

Programming time will depend on the size of the device, and the speed of your PC. Since PLDs are based on
flash technology, programming can be quite slow, and there may be significant pauses while the memory is
erased. The program will report throughput in kilobytes per second, and the percentage of the file that has been
executed. This only represents the position in the SVF file and is not an estimate of the required programming
time. SVF files for Xilinx 9500 devices, for example, will cause the percentage to freeze at very low values,
because this is the part of the file contains the erase commands.

4.4 Notes

• If you specify an IR length of 8, the program will assume you are programming a Xilinx PLD and change its
behaviour in accordance with guidelines from Xilinx. This affects what happens when incorrect data is read
back from the device. This will normally cause the program to immediately report an error, however Xilinx
have defined a proprietary retry sequence that is executed in this situation. The program will only do this if the
IR length is 8 bits.

• The utility will assert nTRST before it begins programming, and will leave nSRST asserted throughout the
programming sequence. This behavior is intended to hold any 4000-series FPGAs in a reset state, which
guarantees that their JTAG circuitry will be active. See section 3.4.1 for details of recommended connections
to Xilinx FPGAs.

JTAG logic configuration utilities

JTAGPROG-0000-PRIV-DOC-D Open access Page 11 of 24

5 BOUNDARY SCAN FLASH PROGRAMMING

5.1 Description

BSFlash is a utility for programming flash memory devices using the boundary scan facilities of an attached
device. The program scans an EXTEST instruction into the device that is connected to the flash chip, and then
uses its boundary scan chain to control the outputs of the device, thus programming the flash.

5.2 Requirements

In order to use the utility, you will need to set up several things:-

• You need to write a Flash Description File. This contains a description of the scan chain in the device you are
using, and details of the specific flash parts that are connected. There is more information on the flash
description file later in this section.

• You need an image to write into the flash. BSFlash currently supports MCS format files, Xilinx BIT files and
raw binary files.

5.3 Syntax

The program has a number of command line options, depending on the required function:–

Program mode – the specified image will be programmed at the given start address:

bsflash /D:dscfile /T:TAPpos /B:bitfile [/A:address] [/S:server]
bsflash /D:dscfile /T:TAPpos /R:rawfile [/A:address] [/S:server]

Verify mode – If the /V switch is used, the contents of the flash at the given address will be verified against the
specified image:

bsflash /D:dscfile /T:TAPpos /B:bitfile [/A:address] [/S:server] /V
bsflash /D:dscfile /T:TAPpos /R:rawfile [/A:address] [/S:server] /V

Output mode – If the /O switch is used, the contents of the flash will be read out and written to the specified file.
You need to supply a start address and the number of bytes to read:

bsflash /D:dscfile /T:TAPpos /B:bitfile /A:addr /L:size [/S:server] /O
bsflash /D:dscfile /T:TAPpos /R:rawfile /A:addr /L:size [/S:server] /O

Test mode – The /t switch will initiate the special test mode. See later for a description of test mode.

bsflash /D:dscfile /T:TAPpos [/S:server] /t

5.4 Options

/D:dscfile This specifies the flash description file to use for this device. The parameter is always required (no
default).

/T:TAPpos Specifies the TAP controller to use. These are numbered from zero (counting from the left in the
Multi-ICE server window). The parameter is required (even if there is only one TAP controller).

JTAG logic configuration utilities

JTAGPROG-0000-PRIV-DOC-D Open access Page 12 of 24

/A:address Specifies a start address for an image. The address is given in hexadecimal (with no leading
characters and not case sensitive). For example: /A:100000 specifies a start address 1MB into the
address space. Note that MCS files contain embedded addresses, which will override any start
address that you give.

/L:size Specifies the number of bytes to read in output mode. The parameter is given in decimal. For
example /L:1024 will read out 1K of data.

/S:server Specifies the host name of the computer running the Multi-ICE server. This parameter is optional
– if absent it will be assumed that the Server is running on the same machine as the program.

/B:bitfile Gives the filename of an MCS or Xilinx BIT file for programming. The program will automatically
detect which format is being used. When in output mode, using this parameter will cause an MCS
file to be generated from the flash data.

/R:rawfile Specifies the filename of a raw binary file for programming. The file will be copied byte-for-byte
into the flash. When in output mode, using this parameter will cause a raw binary image to be
generated from the flash data.

5.5 Writing a flash description file

In order to use the programmer, you will need a flash description file for the device you are using. This specifies
the location of address, data and control bits in the boundary scan chain. Here is an example file:-

[General]
FileType = FlashConfig
Name = SA1100 for Prospector/P1100 board

[Config]
Type = Intel
ChipSize = 8388608
SectorSize = 131072
BlockSize = 32
ManufacturerID = 89
DeviceID = 15
Width = 16
Parallel = 2

[ScanChain]
DRLength = 279
IRLength = 5
Extest = 0
Bit0 = 0:0:0 ROMSEL(I)
Bit1 = 0:1:0 RESETO(O)
Bit2 = 0:0:0 RESET(I)
Bit3 = 0:0:0 TXD3(I)
Bit4 = 0:0:0 TXD3(O)
Bit5 = 0:0:0 TXD3(E)
Bit6 = 0:0:0 RXD3(I)
Bit7 = 0:0:0 RXD3(O)
Bit8 = 0:0:0 RXD3(E)
Bit9 = 0:0:0 TXD2(I)
Bit10 = 0:0:0 TXD2(O)
...etc

JTAG logic configuration utilities

JTAGPROG-0000-PRIV-DOC-D Open access Page 13 of 24

The general section is present to identify this as a valid flash description file (the line FileType =
FlashConfig must be present or the program will reject the file). The name field simply gives a description for
this configuration. It gets printed by BSFlash after it reads the file.

5.5.1 Flash configuration

The config section is used to describe the arrangement of flash chips connected to the device. The type field is
used to specify a programming algorithm to use. Currently the only supported algorithm is Intel, which uses the
Intel Standard Command Set to program a block-erasable flash. The other fields in this section give algorithm-
specific details of the chip sizes and arrangement. BSFlash is able to support most sensible arrangements of flash
chips. Parallel configurations are supported, where several chips are present at the same address to make up a
wider data bus. Both 8-bit and 16-bit devices may be used, and the program also supports banked arrangements,
where several chips are present at consecutive addresses.

ChipSize This specifies the total size, in bytes, of an individual flash chip. The parameter is given in
decimal. The example shows an 8MB device.

SectorSize This gives the size, in bytes, of one of the erasable blocks in an individual flash chip. In the
example this is 128K. Note that the program always erases devices block-by-block. The
chip erase command, if present, will not be used.

BlockSize This gives the size, in bytes, of the write buffer in each flash chip. In the example it is 32
bytes.

ManufacturerID This gives the manufacturer ID of the flash device. The parameter is specified in
hexadecimal. The program will check this information each time it accesses a new chip,
and report an error if the wrong value is returned.

DeviceID This gives the device ID of the flash device. The parameter is specified in hexadecimal.
The program will check this information each time it accesses a new chip, and report an
error if the wrong value is returned.

Width This specifies whether the devices are being used in 8-bit or 16-bit mode. The value should
be either 8 or 16.

Parallel This specifies how many devices are connected in parallel (in effect – the width of the data
bus). Buses of 8, 16 and 32 bits are supported.

After reading this data, BSFlash will make some assumptions which you should be aware of:-

• All the connected flash chips are of the same type, and operating in the same mode.

• Data is transferred across the bus in whatever sized words you have specified. For example if you have
specified two 16-bit devices in parallel, data will be transferred one 32-bit word at a time.

• The address bus uses byte addresses. So in the example above, where the word size is 32-bits, the address
will be incremented by 4 after each access. Other arrangements are possible through careful remapping of
the address pins in the scan chain description (see later).

• The first flash chip (or chips in a parallel system) is located at address 0, and successive chips in the bank are
located at consecutive addresses. There is currently no way to specify a different base address for the flash
memory. If, for example, your flash begins at address 0x80000 (512K) and your flash chips are 2MB devices,
the program will incorrectly assume that the first chip boundary occurs at address 0x200000 (2MB), whereas it
is actually at 0x280000. It is likely that the flash chips’ address pins will be directly connected to the JTAG
device you are using, in which case chip boundaries will occur in the places the program expects them to. The
only situation in which you need to consider this problem is if the connections to the flash chip pass through
some sort of address remapping logic.

JTAG logic configuration utilities

JTAGPROG-0000-PRIV-DOC-D Open access Page 14 of 24

5.5.2 The Boundary Scan Chain Description

The ScanChain section of the file contains a description of the JTAG boundary scan chain in the device being
used to access the flash memory. The section starts with some general fields:-

DRLength This specifies the number of bits in the EXTEST boundary scan data register.

IRLength This specifies the number of bits in the instruction register for this device.

Extest This specifies the bit pattern to scan into the instruction register to put the device in
EXTEST mode. Note that according to the IEEE JTAG spec, this should always be 0.

Next there is a description of each bit in the scan chain. The bits are numbered from 0 – and bit0 is the first one
that gets scanned in (this is the same numbering scheme as used in BSDL files). An example line looks like this:-

Bit29 = 5:3:1 A1(O)

The important part of the line is the three numbers separated by colons. BSFlash will ignore anything else on the
line and it is recommended you use this space to add a comment that describes the bit. The three numbers are
interpreted as follows:–

<pin type>:<bit type>:<index>

The pin type identifies which group of pins this bit belongs to. The choices are as follows:–

0 Set Value – this bit is not used for flash programming and should be permanently set to 1 or 0 (depending
on the bit type value)

1 OE – this bit controls the output enable pin.

2 WE – this bit controls the write enable pin.

3 CE – this bit controls the chip select pin.

4 Data – this bit controls a data pin.

5 Address – this bit controls an address pin.

6 Reset – this bit controls a pin that is connected to the flash reset input.

The bit type describes the specific function of this bit. It is common for up to three bits to be assigned to each IO
pin in a boundary scan chain. These are generally the output value of the pin, the tristate control for the IO pad,
and the captured input value from that pin. Here is a typical example from a PLD scan chain:–

Bit87 = 5:5:13 XA13(E)
Bit88 = 5:3:13 XA13(O)
Bit89 = 5:2:13 XA13(I)

The choices for bit type are as follows:–

0 Set permanently to zero – This should only be used if the pin type is 0.

1 Set permanently to one – This should only be used if the pin type is 0.

2 Input – Specifies that the bit will contain captured input data from an IO pad. Note that the program
currently ignores inputs for anything other than data pins.

3 Output – Specifies that this bit controls the output value to the IO pad.

4 Inverted output – Specifies that this bit controls the output value to the IO pad, and that this value should
be written to the scan chain inverted.

JTAG logic configuration utilities

JTAGPROG-0000-PRIV-DOC-D Open access Page 15 of 24

5 Enable – This bit is a tristate control (for an output pad) or a direction control (for a bi-directional pad).
Placing a one in the bit will enable the output (or set the pad to be an output) and placing a zero in the bid
will tristate (disable) the output (or set the pad to be an input).

6 Disable – This is a tristate control, but works the other way round to an enable. Placing a one in the bit
will tristate (disable) the output (or set the pad to be an input) and placing a zero in the bit will enable the
output (or set the pad to be an output).

The index field identifies particular pins, for those pin types which are buses. This includes the data and address
pin types. The index is numbered from zero.

5.5.3 Notes

Scan chain length – If the scan chain you are using has 255 bits or less, there are important issues that you
should understand about the way BSFlash will try to access the scan chain. Refer to the section on Access Speed
for more information.

Inverted control lines – Note that for consistency BSFlash uses an internal active high model for the control lines
(OE, WE, CE and RESET). These lines are almost always active low in real systems (nOE, nWE, and so on), so
the output bits for these pins will usually be set to type 4 (inverted output).

Note that you are not forced to accurately describe the function of all the pins. In fact most of the bits in the scan
chain are likely to be set to a permanent value for one reason or another. (for example – chip enable lines may
have to be set correctly to connect the flash to the data bus).

Reset – the reset line is driven active by BSFlash for about one second before programming begins. If this is not
the required behaviour, or the signal is not available – simply omit this pin type from the description file and set
any reset lines to the desired permanent value. There will be a delay before programming begins, but no outputs
will change.

Address lines – It may be necessary to remap the address bits in the boundary scan chain. Remember that
BSFlash assumes that the address bus uses byte addressing. You can change this behavior by remapping the
address indices. Here are two examples:-

• Imagine a system where a 16-bit flash part is connected to the bottom half of a 32-bit data bus with byte
addressing. Because the flash is 16-bits wide, the program will increment the address by 2 bytes after each
access, whereas the required behavior is an increment of 4 bytes (to skip the ‘unoccupied’ half of the bus).
However, you can force this behavior by assigning a constant zero value to address pin zero and then
specifying the other pins as follows: define the real A1 as A0 in the description file, A2 as A1 and so on. This
has the effect of multiplying the program’s address by two before outputting it to the bus, which is precisely
the required behavior.

• Imagine a system where two 16-bit flash parts are connected in parallel to a 32-bit data bus with word
addressing. The program will increment the address by 4 after each access, but the bus is word-addressed,
so the required increment is actually 1. The solution is to remap the pins as follows: define the real A0 as A2
in the description file, A1 as A3, A2 as A4 and so on. The bottom two bits of the address will be discarded,
effectively dividing it by 4, which is the required behavior.

CE – The chip enable pin is not currently used during programming and will be set permanently active. You should
still use pin type 3 in your description file as it may be used in future versions of BSFlash.

Bus enables – Some chips contain tristate bits that control an entire bus (for example – one bit controls the
direction of the whole data bus). This is not a problem, since BSFlash does not individually modify the tristate
control bits for buses. Specify the bit with the correct pin and bit type, and set the index to zero (or any other value
you like)

Unidirectional buses – It is possible that the data bus interface to the device is unidirectional with separate data
in and data out buses. This arrangement can be specified quite easily in the description file. Set the input and
output bits in the correct places (4:3:x for an output, 4:2:x for an input). If these IO pads also have tristate controls,

JTAG logic configuration utilities

JTAGPROG-0000-PRIV-DOC-D Open access Page 16 of 24

set them to the appropriate permanent value (0:0:0 or 0:1:0). There may also be a data direction output. Find the
output bit for this pin, and set it as a data enable or disable (4:5:0 or 4:6:0). The value output from this pin during
programming will then be the desired direction for the bus.

5.6 Test mode

When writing a description file, it is quite likely that mistakes will be made, especially if the boundary scan chain
contains hundreds of bits. It is sometimes difficult to determine whether particular pins are working properly. For
this reason BSFlash supports a special test mode, which makes debugging the file (and other board problems) a
bit easier.

Test mode is initiated by specifying the /t switch on the command line. The program will sit in a loop toggling data
bits 0 and 1 continuously (bit 1 will be an inverted version of bit 0). By inserting these output bits into the boundary
scan description, you can test whether particular bits are having the desired effect on the pins of the chip.

So for example – to test whether a particular bit actually is the output bit for a particular pin, and that the pin is
correctly connected to the board, do the following. Rewrite the description file so that all the bits apart from the
one under test are set to permanent values (0:0:0 or 0:1:0). Set the bit under test to be a data output (4:3:0) and
then run the test. If everything is working properly, you should see a rapidly changing waveform if you probe the
pin on the board. Note that this may not be regularly spaced (no attempt is made by the program to space out the
transitions).

5.7 Access speed

BSFlash will output performance statistics as it programs the flash. On a fast machine, the performance may
approach 1K/s, but due to the number of JTAG operations that must be performed just to change the state of one
bit in the scan chain, this is about as fast as the programming is likely to get.

If your scan chain has 255 or less bits, BSFlash is able to take advantage of faster access commands that are
built into the Multi-ICE unit. These commands rely on non-input bits in the scan chain being recirculated correctly.
For BSFlash to successfully use the faster commands, output and tristate control bits must not be overwritten in
the Capture-DR state of the JTAG TAP controller state machine. This behavior is undefined in the IEEE spec, and
many chips do in fact overwrite the bits with constant values.

It is important to realize that by default, BSFlash will try to use the faster access method if the scan chain length is
255 or less. If the chip you are using does not recirculate bits correctly, this will cause failures when programming.
You can force the program not to use these commands by inserting the following line into the ScanChain section
of the description file:–

[ScanChain]
Access = Slow

JTAG logic configuration utilities

JTAGPROG-0000-PRIV-DOC-D Open access Page 17 of 24

5.8 Testing the scan chain

If you are unsure which bits get recirculated in the device you are using, you can use a special utility (ChainTest)
that will analyze the EXTEST boundary scan chain of the chip. Use the following command line:–

ChainTest <chainpos> <IRlen> <DRlen> [<server>]

• Chainpos – Specifies the TAP controller to use. These are numbered from zero (counting from the left in the
Multi-ICE server window).

• IRlen – This specifies the number of bits in the instruction register for this device.

• DRlen – This specifies the number of bits in the EXTEST boundary scan data register.

• Server – Specifies the host name of the computer running the Multi-ICE server. This parameter is optional – if
absent it will be assumed that the Server is running on the same machine as the program.

The report from the program will usually span several pages, so you may want to redirect it to a file. Use the
standard console redirection to achieve this. For example:–

ChainTest 0 5 214 >out.txt

The report from the program will look something like this:–

Boundary Scan Tester
Version 1.6

Scanning in EXTEST instruction...
Analysing scan chain...please wait...
Analysis complete...

Bit0 - 0,126,0,126 - Always captures 0
Bit1 - 126,0,0,126 – Recirculated
Bit2 - 0,126,0,126 - Always captures 0
Bit3 - 0,126,0,126 - Always captures 0
Bit4 - 126,0,0,126 – Recirculated
Bit5 - 126,0,63,63 – Indeterminate
Bit6 - 0,126,0,126 - Always captures 0
Bit7 - 126,0,0,126 – Recirculated
Bit8 - 0,126,0,126 - Always captures 0
Bit9 - 126,0,126,0 - Always captures 1
Bit10 - 126,0,0,126 – Recirculated
...etc

By matching this report up with your boundary scan description or BSDL file, you can see which bits will be re-
circulated and which bits always capture a set value. Note that you only need to consider non-input bits that are
actually used during programming. To illustrate this point: Imagine ChainTest reports that the enable bit for the
WE pin always captures the value one. This is not a problem, because the WE pin is always enabled during
programming (only the output value changes).

JTAG logic configuration utilities

JTAGPROG-0000-PRIV-DOC-D Open access Page 18 of 24

6 PROGCARDS

6.1 Description

The ‘ProgCards’ utility provides a scripting engine for all the programming methods that are supported by the
programming suite. By reading descriptions from a set of ‘board files’, the program produces a menu of potential
programming scripts that can be executed on the connected devices. By creating and combining board files, you
can produce any desired programming system.

6.2 Syntax

ProgCards [<server>]

All configuration information is read from files in the current directory. The only command line argument to the
utility is (optionally) the name of the machine on which the Multi-ICE server is running. This can be used to
connect to a remote machine. If the argument is absent, the server is assumed to be running on the local
machine.

6.3 Operation

The program will search the current directory for files with a .BRD extension. These files contain descriptions of
the programming tasks can be performed, and may be altered by the user to achieve the desired functionality. The
program will then connect to the Multi-ICE server and try to match the descriptions it has read with the devices
connected to Multi-ICE. If several possible matches are made, a menu will be presented and the user must make
a choice.

Each board file contains a description of a set of devices (using the names that appear in the Multi-ICE server
window). ProgCards searches the entire scan chain (all of the devices shown in the Multi-ICE server window)
starting with the first device (TAP #0) and looks for matches with the sets of devices described in the board files. If
there is more than one match, a menu will be constructed and the user has to make a choice. ProgCards then
executes the programming steps contained in the chosen board file and moves on to the next position in the scan
chain, looking for new matches.

6.4 Writing a board file

Each board file contains the following information:-

• A set of devices/TAPs. These are described using the Multi-ICE driver names, in the order in which they
occur in the JTAG scan chain. For each device position, you can specify several possible device names, or a
wildcard that matches any device. Progcards 2.00 and above also supports the use of TAPs as an alternative
to devices, this only changes the way the ‘devices’ are numbered. This is the preferred numbering method.

• The programming steps necessary to configure the matched devices. There can be any number of steps
from zero up. Each step names a particular programming method, and specifies one of the matched devices.
Depending on the particular method there may also be other parameters. Note that the devices are numbered
from zero, starting with the first device that matches.

• A priority. If several matching configurations are found, the one with the highest priority will be used. A menu
will only be presented if several configurations are matched with the same priority (and no higher-priority
configuration is present). The priority scheme allows automatic programming setups to be created that will

JTAG logic configuration utilities

JTAGPROG-0000-PRIV-DOC-D Open access Page 19 of 24

perform the correct configuration automatically (without presenting a menu) even when potential matches
overlap.

6.4.1 An example board file

[General]
Name = ARM7TDMI Header
Priority = 5

[ScanChain]
TAPs = 4
TAP0 = UNKNOWN,XC4062XLA
TAP1 = XC9572
TAP2 = XC9572
TAP3 = UNKNOWN,ARM7TDMI

[Program]
SequenceLength = 6

; download FLASH programmer
; to PLD
Step1Method = PLD
Step1TAP = 2
Step1File = AtmelFlashVia_CM_9572.svf

; and to FPGA
Step2Method = FPGA
Step2TAP = 0
Step2File = AtmelFlashVia_CM_4062.svf

; Program the FLASH chip
Step3Method = FLASH
Step3TAP = 0
Step3File = header_card_fpga.bit

; Verify that the programming worked
Step4Method = FLASHVERIFY
Step4TAP = 0
Step4File = header_card_fpga.bit

; Program the header-card PLD
Step5Method = PLD
Step5TAP = 1
Step5File = header_pld.svf

; Restore the serialiser
Step6Method = PLD
Step6TAP = 2
Step6File = bitstreamer.svf

JTAG logic configuration utilities

JTAGPROG-0000-PRIV-DOC-D Open access Page 20 of 24

The ‘device’ (old style) method of numbering devices is shown below.

[ScanChain]
Devices = 4
Device1 = UNKNOWN,XC4062XLA
Device2 = XC9572
Device3 = XC9572
Device4 = UNKNOWN,ARM7TDMI

[Program]
SequenceLength = 6

; download FLASH programmer to PLD
Step1Method = PLD
Step1Device = 2
Step1File = AtmelFlashVia_CM_9572.svf

6.4.2 General comments

• The syntax is the same as that for a Windows .INI file. Anything after a semi-colon is a comment.

• The .BRD files may have any filename (so long as it ends with the correct extension). The text that is
displayed in the menu, if one is generated, is taken from the ‘name’ field at the top of the file.

• If the ‘device’ method of numbering devices is used, then the device numbers start at one. However, the
Device parameter for each programming step gives a zero-based offset from the first device matched. In the
example above, Step2Device = 0 refers to the first matched device. If the ‘TAP’ method of numbering is
used then the TAP numbering starts at zero, and will avoid confusion.

• Filenames may be absolute or relative (to the current directory). The following examples are both valid:–

Step1File = C:\Work\bitfiles\peripheral.bit
Step3File = ../../supportfiles/header.bit

• Method names and step parameters are not case sensitive.

• In the device list, you may specify any number of possible device names for each position, separated by
commas. Note that there should be no space between the commas and the device names. You may also
specify a wildcard (a single ‘star’ character) which will match any device. For example:-

; match any device followed by a Virtex FPGA
[ScanChain]
TAPs = 2
TAP0 = *
TAP1 = XCV1000

• Text may be displayed at the end of a programming step. For example:-

Step1DisplayText = Version 2.0 now present

• A pause may be inserted at the end of a programming step, press a key to continue. For example:-

Step1Pause = 1

JTAG logic configuration utilities

JTAGPROG-0000-PRIV-DOC-D Open access Page 21 of 24

6.4.3 Supported programming methods

ProgCards supports a wide range of programming methods. These are described below.

6.4.3.1 FPGA download

This method downloads temporary configurations to Xilinx 4000-series FPGAs. The functionality is identical to the
FPGA utility described in section 3. Here is an example step from a board file:-

Step2Method = FPGA
Step2TAP = 0
Step2File = viafpga.bit

The File parameter names a Xilinx bit file to download to the device. MCS format images are also supported, as
for the FPGA utility (See section 3.2). See section 3.4.1 for notes about Xilinx 4000-series configuration.

6.4.3.2 Virtex / Virtex E download

This method downloads temporary configurations to Xilinx Virtex FPGAs. The functionality is identical to the FPGA
utility described in section 3. Here is an example step from a board file:-

Step1Method = Virtex
Step1TAP = 1
Step1File = peripheral.bit

The File parameter names a Xilinx bit file to download to the device. See section 3.4.2 for notes about Virtex
configuration.

6.4.3.3 PLD download

This method executes the contents of serial vector format files, used to program PLD devices. The functionality is
identical to the PLD utility described in section 4. Here is an example step from a board file:–

Step5Method = PLD
Step5TAP = 2
Step5IRLength = 10
Step5File = philipspld.svf

The IRLength parameter is optional. If present, it gives the length (in bits) of the JTAG instruction register for this
device. If absent, ProgCards will assume an IR length of 8 (a Xilinx 9500 device). See section 4.4 for notes about
PLD programming.

6.4.3.4 Boundary scan flash programming

A subset of the functionality of the BSFlash utility (described in section 5) is supported by ProgCards. There is no
capability for reading data from a flash chip to a file and the test mode described in section 5.6 is not supported.
Here is an example programming step:-

Step3Method = BSFlash
Step3TAP = 2
Step3DescFile = flash.fld
Step3File = image.raw
Step3FileType = Binary
Step3Address = 1C000

• DescFile – this parameter gives the name of the flash description file. See section 5.5 for more details.

• File – this parameter gives the path to the file that will be written into the flash.

JTAG logic configuration utilities

JTAGPROG-0000-PRIV-DOC-D Open access Page 22 of 24

• FileType – There are three possible file types: XilinxBit, MCS and Binary. Note that specifying
XilinxBit or MCS actually has the same affect. The utility can automatically distinguish between the two file
types and will accept either. The Binary file type will write any file into the flash, byte for byte.

• Address – This parameter is optional, and specifies the starting address for the image in the flash. This is
given as a hexadecimal number, with no leading characters (FEA1 is a valid address, but 0x8C is not). If the
parameter is absent, the start address defaults to zero.

Verify is also supported. The parameters are identical, except for the method name:–

Step4Method = BSFlashVerify
Step4TAP = 2
Step4DescFile = flash.fld
Step4File = image.raw
Step4FileType = Binary
Step4Address = 1C000

6.4.3.5 Indirect flash programming (for Integrator platforms)

Several methods are provided for programming flash devices indirectly. These methods have been developed
specifically for ARM Integrator boards and utilize special logic designs implementing a JTAG programming
interface to a connected flash chip. Typically the designs will be temporarily downloaded to the FPGA in an earlier
programming step. In some cases, the programming interface may be distributed across two devices. In the
example file in section 6.4.1, you can see that the flash interface is downloaded in two parts to an FPGA and a
PLD before the Flash programming method is used.

The specific details and possible arrangements of the flash interfaces are not documented here. There are
currently three types of interface, one for Atmel AT49 flash chips, and two for Intel devices. All interfaces support
programming and verify, and are always accessed through an FPGA device.

Atmel devices are programmed one byte at a time, with an initial erase cycle for the whole chip. The file formats
supported are Xilinx bit files and MCS files. There is no provision for specifying a start address – the address
fields present in MCS files can be used to load images at addresses other than zero.

; Program an Atmel flash device
Step3Method = Flash
Step3TAP = 0
Step3File = image1.mcs

; Verify the contents of an Atmel flash device
Step4Method = FlashVerify
Step4TAP = 0
Step4File = image1.mcs

Intel devices are programmed in blocks, with an erase cycle at the beginning of each block. An address parameter
is provided to allow several bit files to be placed in one flash chip. The syntax is the same as for the BSFlash
address parameter, described in section 6.4.3.4.

; Program an Intel flash device
Step5Method = IntelFlash
Step5TAP = 2
Step5File = upperimage.bit
Step5Address = 2E000

; Verify the contents of an Intel flash device
Step6Method = IntelFlashVerify
Step6TAP = 2
Step6File = upperimage.bit
Step6Address = 2E000

JTAG logic configuration utilities

JTAGPROG-0000-PRIV-DOC-D Open access Page 23 of 24

To program Intel devices on Virtex based Integrator logic modules, the Virtex programming method is used for the
first step to download a flash programmer into the FPGA. The next step(s) then use this design to talk to the flash
device.

; Configure the FPGA with the flash programmer design
Step1Method = Virtex
Step1TAP = 0
Step1File = IntelFlashVia_LM_XCV1000.bit

; Program an Intel flash device
Step2Method = IntelFlash
Step2TAP = 0
Step2File = example.bit

; Verify the contents of an Intel flash device
Step3Method = IntelFlashVerify
Step3TAP = 0
Step3File = example.bit

To program Intel devices on Altera based Integrator logic modules, the flash programmer is pre-loaded into the
PLD on the board, and it is therefore not necessary to download a temporary flash programmer design first. The
IntelFlash and IntelFlashVerify methods are used as for Virtex.

; Program an Intel flash device
Step2Method = IntelFlash
Step2TAP = 0
Step2File = example.rbf

; Verify the contents of an Intel flash device
Step3Method = IntelFlashVerify
Step3TAP = 0
Step3File = example.rbf

Note: That the binary file must have the extension .rbf so that the file type can be recognized by progcards.

To program Intel devices on the Integrator AP motherboard, the FPGA programming method is used for the first
step to download a flash programmer into the FPGA. The next step(s) then use this design to talk to the flash
device.

; Configure the FPGA with the flash programmer design
Step1Method = FPGA
Step1TAP = 2
Step1File = IntelFlashVia_AP_XC4085XLA.bit

; Program an Intel flash device
Step2Method = APIntelFlash
Step2TAP = 2
Step2File = data.rbf

JTAG logic configuration utilities

JTAGPROG-0000-PRIV-DOC-D Open access Page 24 of 24

; Verify the contents of an Intel flash device
Step3Method = APIntelFlashVerify
Step3TAP = 2
Step3File = data.rbf

Note that default address for the AP system flash programming is 0x24000000.

6.4.4 Programming tips

• It is often useful to be able to skip a matched configuration (if, for example, you want to be able to program
just one set of devices in a long scan chain). To achieve this, create a new board file that has the same device
list as the real configuration. Set this to the same priority (so it is included in the menu) and set the
SequenceLength field to 0. Change the name to something sensible (e.g. “ARM720T Header (Skip)”). When
selected, this configuration will do nothing, and ProgCards will move on to the next set of devices in the chain.

• If there are devices in the scan chain which are not to be programmed, you can do something similar. For
example, imagine a scan chain with two sets of devices to be programmed, separated by an additional device
that should be ignored. Suppose that this device is recognized as “UNKNOWN” by Multi-ICE. Create a new
board file with just this single device, and make the SequenceLength 0 so that no programming is performed.
This will achieve the desired effect, but the configuration may also match the beginning of one of the two sets
of devices (because FPGAs are also listed as “UNKNOWN”). If you do not want this to be reflected in the
menu, make sure that your new board file has a lower priority than the others. ProgCards will notice this, and
only include the higher-priority configurations.

• If you have set up several configurations for a particular board and want to make the program automatically
choose a specific one, just increase the priority of that board file. If only one file has the highest priority, no
menu will be generated (programming will be automatic). You do not have to delete the other configurations,
and can easily return to the menu system by changing the priority back.

