# Chapter 2 Basics of VLSI Testing

#### Jin-Fu Li

Advanced Reliable Systems (ARES) Laboratory Department of Electrical Engineering National Central University Jhongli, Taiwan

### **Outline**

- Defects, Faults, and Errors
- □ VLSI Testing Concepts
- **D** Testing Economics
- □ Test Quality Measure

## Defect, Fault, and Error

#### Defect

- A defect is the unintended difference between the implemented hardware and its intended design
- Defects occur either during manufacture or during the use of devices
- Fault
  - A representation of a *defect* at the abstracted function level
- Error
  - A wrong output signal produced by a defective system
  - An error is caused by a Fault or a design error

## **Typical Types of Defects**

### Extra and missing material

- Primarily caused by dust particles on the mask or wafer surface, or in the processing chemicals
- Oxide breakdown
  - Primarily caused by insufficient oxygen at the interface of silicon (Si) and silicon dioxide (SiO<sub>2</sub>), chemical contamination, and crystal defects
- Electromigration
  - Primarily caused by the transport of metal atoms when a current flows through the wire
    - Because of a low melting point, aluminum has large self-diffusion properties, which increase its electromigration liability

Example

Consider one two-input AND gate



Defect: a short to ground



- □ Fault: signal b stuck at logic 0
- Error: a=1, b=1, c=0 (correct output c=1)
- Note that the error is not permanent. As long as at least one input is 0, there is no error in the output

Advanced Reliable Systems (ARES) Lab.

## Defect, Fault, and Error

Different types of defects may cause the same fault



- Different types of faults may cause the same error
  - E.g., A stuck-at-0, Y=1; C stuck-at-1, Y=1







| С | D | Y | Y(C is S/1) |
|---|---|---|-------------|
| 0 | 0 | 0 | 1           |
| 0 | 1 | 1 | 1           |
| 1 | 0 | 1 | 1           |
| 1 | 1 | 1 | 1           |

### Ideal Tests & Real Tests

#### The problems of ideal tests

- Ideal tests detect all defects produced in the manufacturing process
- Ideal tests pass all functionally good devices
- Very large numbers and varieties of possible defects need to be tested
- Difficult to generate tests for some real defects
- Real tests
  - Based on analyzable fault models, which may not map on real defects
  - Incomplete coverage of modeled faults due to high complexity
  - Some good chips are rejected. The fraction (or percentage) of such chips is called the *yield loss*
  - Some bad chips pass tests. The fraction (or percentage) of bad chips among all passing chips is called the *defect level*

### **How to Test Chips?**



## **Cost of Test**

- Design for testability (DFT)
  - Chip area overhead and yield reduction
  - Performance overhead
- □ Software processes of test
  - Test generation and fault simulation
  - Test programming and debugging
- Manufacturing test
  - Automatic test equipment (ATE) capital cost
  - Test center operational cost

## **ADVENTEST Model T6682 ATE**

Consists of

- Powerful computer
- Powerful 32-bit digital signal processor (DSP) for analog testing
- Probe head: actually touches the bare dies or packaged chips to perform fault detection experiments
- Probe card: contains electronics to measure chip pin or pad



### **Internal Structure of the ATE**



Source: H.-J. Huang, CIC

### **ATE Test Operation**



Source: H.-J. Huang, CIC

### Characterization testing

- A.k.s. *design debug* or *verification testing*
- Performed on a new design before it is sent to production
- Verify whether the design is correct and the device will meet all specifications
- Functional tests and comprehensive AC and DC measurements are made
- A characterization test determines the exact limits of device operation values

#### DC Parameter tests

- Measure steady-state electrical characteristics
- For example, threshold test

$$\Box \quad 0 < V_{OL} < V_{IL}$$

 $\Box$  V<sub>IH</sub> < V<sub>OH</sub> < V<sub>CC</sub>

#### □ AC parametric tests

- Measure transient electronic characteristics
- For example:

Rise time & fall time tests



### Production testing

- Every fabricated chip is subjected to production tests
- The test patterns may not cover all possible functions and data patterns but must have a high fault coverage of modeled faults
- The main driver is cost, since every device must be tested. Test time must be absolutely minimized
- Only a go/no-go decision is made
- Test whether some device-under-test parameters are met to the device specifications under normal operating conditions
- Burn-In testing
  - Ensure reliability of tested devices by testing
  - Detect the devices with potential failures

- The potential failures can be accelerated at elevated temperatures
- The devices with infant mortality failures may be screened out by a short-term burn-in test in an accelerate
- □ Failure rate versus product lifetime (*bathtub curve*)



## **Testing Economics**

- Chips must be tested before they are assembled onto PCBs, which, in turn, must be tested before they are assembled into systems
- □ The rule of ten
  - If a chip fault is not detected by chip testing, then finding the fault costs 10 times as much at the PCB level as at the chip level
  - Similarly, if a board fault is not found by PCB testing, then finding the fault costs 10 times as much at the system level as at the board level
- Some claim that the rule of ten should be renamed the rule of twenty

Chips, boards, and systems are more complex

## **VLSI Chip Yield**

- A manufacturing defect is a finite chip area with electrically malfunctioning circuitry caused by errors in the fabrication process
- A chip with no manufacturing defect is called a good chip
- Fraction (or percentage) of good chips produced in a manufacturing process is called the *yield*. Yield is denoted by symbol Y
- Cost of a chip

Cost of fabricating and testing a wafer

Yield x Number of chip sites on the wafer

## **VLSI Chip Yield**



Wafer yield = 12/22 = 0.55

Wafer yield = 17/22 = 0.77

## Fault Coverage & Defect Level

### □ Fault coverage (FC)

- The measure of the ability of a test (a collection of test patterns) to detect a given faults that may occur on the device under test
- FC=#(detected faults)/#(possible faults)
- Defect level (DL)
  - The ratio of faulty chips among the chips that pass tests
  - DL is measured as *defects per million* (DPM)
  - DL is a measure of the effectiveness of tests
  - DL is a quantitative measure of the manufactured product quality. For commercial VLSI chips a DL greater than 500 DPM is considered unacceptable
- DL =  $1 Y^{(1-FC)}$  and  $0 < DL \le 1 Y$

## **Defect Level & Quality Level**

□ For example, required FC for DL=200 DPM

| Y(%)  | 10     | 50    | 90   | 95   | 99 |
|-------|--------|-------|------|------|----|
| FC(%) | 99.991 | 99.97 | 99.8 | 99.6 | 98 |

- Quality level (QL)
  - The fraction of good parts among the parts that pass all the tests and are shipped

•  $QL = 1 - DL = Y^{(1-FC)}$  and  $0 \le QL \le 1$ 

Consequently, fault coverage affects the quality level