System-in-Package (SiP) Testing

Jin-Fu Li Department of Electrical Engineering National Central University Jhongli, Taiwan

Outline

Introduction

- System-on-Chip (SoC), Multichip
 Module(MCM), and System-in-Package (SiP)
- Testing of Bare Dies
- System-in-Package Testing

System-on-Package

Relation of SoP, SiP, 3-D IC, and SoC

System-in-Package

- The system-in-package (SiP) is a single miniaturized functional module realized by vertical stacking of two or more similar or dissimilar bare or packaged chips
- Bringing the chips closer together enables the highest level of silicon integration and are efficiency at the lowest cost, compared to mounting them separately in traditional was
- SiP technology allows the integration of heterogeneous IC technologoies
- Therefore, SiP technology is emerging as a strong contender in a variety of applications that include cell phones, digital camera, PDAs, etc.

Chip Package

- Basic requirements of chip package
 - Signal distribution
 - Heat dissipation
 - Power distribution
 - Circuit support and protection

Packaging Hierarchy

Wire Bonding

Pitch=75-130 um, Leads=1.5mm

► I/O density=400/cm²

Flip-Chip Bonding

- The flip chip assembly is much smaller than a traditional carrier-based system
- No leads are needed
- Pitch=75-250 um
- ► I/O density=1600/cm²

Flip-Chip Bonding

Advantages

- The flip chip assembly is much smaller than a traditional carrier-based system
- The chip sits directly on the circuit board, and is much smaller than the carrier both in area and height
- Disadvantages

- Not suitable for easy replacement, or manual installation
- Require very flat surfaces to mount to
- Sometimes difficult to maintain as the boards heat and cool

Outline

- Introduction
- Interconnection and Package
- System on Chip (SoC), Multichip
 Module(MCM), and System in Package (SiP)
- Bare Dies Testing
- System in Package Testing

SOC, MCM, and SIP

- Mainframe computers drove MCMs in 1980s
- High-end networking, signal processing, and digital communication demands drive SoC
- Cell phones and handsets are driving SiPs solutions
- Some view SiP as a vertical MCM
- SoC: a packaged chip with only one die
- SiP: an assembled system composed of a number of individual dies on a packaged chip

System on Chip

Several components are integrated into a chip

MCM

Multi-chip module package

- Several specialized chips are also assembled in a single ceramic package as a system solution using traditional assembly processes
- The chips in an MCM are mounted on the same plane (the cavity substrate), whereas SiP employs die stacking as its natural configuration

System-in-Package

- SiP design and test is a viable, rapid, and cost-effective solution to high-density system integration
- SiP is more than an IC package containing multiple die
- SiP helps exceed the limits of the SoC designs

Three-Dimensional Packaging

- 3D packaging is critical to integrating the multi-media features consumers demand in smaller, lighter products
- It can deliver the highest level of silicon integration and area efficiency at the lowest cost

SiP Market

- Portable devices, cell phone
 - 70~80%
- Module integration
 - RF cellular, RF amplifier, switch, transceiver
 - Digital
 - Memory module, DRAM, Flash
 - WLAN, Bluetooth
- In 2008, 3.25 billion SiPs are expected to be assembled

Advantages of SiP

- Combining different die technologies (Si, GaAs, SiGe, etc.)
- Combining different die geometries (180nm, 90nm, 45nm, etc.)
- Including other technologies (MEMS, optical, vision, etc.)
- Including other components (antennas, resonators, connectors, etc.)
- Increasing circuit density and reducing PCB area
- Reducing design effort
- Improving performance

Challenges

- The most critical issues are design and test methods and solutions
 - Common EDA tools are necessary for integrating mixed-signal and RF blocks
 - KGD should be readily available for SiP designers
 - The proliferation of integrated passive devices (IPD) at the SiP substrate level is needed

Test Issues

- How to test chips and packages
 DFT, package test, and KGD strategies
- How to integrate and test different types of memories
 - Alternative design and package options
 - Debug and yield enhancement

Outline

- Introduction
- Interconnection and Package
- System on Chip (SoC), Multichip
 Module(MCM), and System in Package (SiP)
- Bare Dies Testing
- System in Package Testing

SiP Test Flow

Quality

Die process

SiP Process

Yield of SiP

- > If various chips are used in a chip
 - $Y_m = [(p1)^A (p2)^B (p3)^C ...]$
 - \circ Y_m: yield probability for assembled chips
 - A, B, C: number of dice of each type
 - p1: probability of die 1 being good
- > Yield of SiP is also dependent on
 - P_s: Know-good probability of substrate
 - P_i: Know-good probability of die interconnects
 - Q: number of interconnects
 - P_w: probability of assembly workmanship
 - $Y_{sip} = Y_m x P_s x (P_i)^Q x P_w$

SiP Defect Level

- Definition of defect level: percentage of SiPs shipped which passed the SiP test, but may be faulty
 - $DL=1-Y_{sip}^{(1-FC)}x100\%$
 - Y_{sip}: yield of SiP
 - FC: faulty coverage
- Defect level can be reduced by high quality bare dies and high FC

Example

• The assembly process accumulates all the problems of the individual dies

	DLi (ppm)	Pi (%)	
Substrate	600	99.94	
Die 1	4100	99.59	
Die 2	35500	97.45	
Die 3	1200	99.88	
Y _{SIP}		96.87	

Bare Dies Testing

- To test an SiP, each bare die must be tested first before packaged in the SiP
 - To eliminate compound yield loss
- It is performed at standard wafer sort
 - Manufacturing defects of silicon implementation
- Known Good Dies
 - Confidence level that bare dies are fully tested for performance over a temperature range
 - A bare die with the same quality after wafer test
- Mechanical probing techniques
- Electrical probing techniques

KGD Approaches

- Process control-based approach
 - Improve yield through six sigma and zero defect yield programs
- Testing-based approaches
 - Sampling approach
 - Full test and burn-in approaches
 - Temporary pressure contacts
 - Wafer-level
 - Die-level
 - Permanent contacts
 - Semi-permanent contacts
 - Design-based approaches

Testing-Based Approaches

- Require high quality functional test
- Require performance test
 - Performance driven application (at-speed)
- Require reliability screening
 - Wafer level burn-in
 - Tape automated bonding (TAB)
 - Temporary test packaging

Sampling Approach

- Based on statistical probability of KGD
 - Systematic defects- process or design-related problems
- Process
 - Package a sufficient sample of dies in wafer lot
 - Perform exhaustive test and burn-in
 - Certify entire lot if meets requires criteria
 - Perform binning each die based on tests of nearest neighbors

Full Test and Burn-In Approaches

- A: Temporary pressure contacts
 - Wafer level
 - Reliability screens
 - Burn-in
 - Die level
 - Temporary packages, carrier
 - Probe cards and techniques
 - Membrane pressure
- B: Permanent contacts
- C: Semi-permanent contacts

Wafer-Level Burn-In

- Full wafer contactor
- Applied High voltage and temperature
- Long term solution for KDG

Wafer-Level DC Stress

- Used for many years by DRAM vendors to reduce burn-in time
- Often referred to as wafer-level BI
- Provides external control of array voltages
- Stresses most defects

Die-Level Burn-In Methods

Method	Pitch Limit	Process complexity	Parallelism	Initial \$	Operating \$	Optimal Value
Carrier	>120um	Med High	Low-Same as PLBI	Low	Medium	Low
Sac Metal WLBI	>120um	High	High-full Wafer	Medium	Medium High	High
Direct Contact WLBI	<100um	Low	High-full wafer	High- Contactor tooling and NRE	Low	High

Source: freescale

Probe Cards

- Wafer sort using probe card is a traditional technique
- New probe cards are required for new die
- High performance operations depends on probe pin
- ATE Limitations
 - High I/O counts
 - High performance devices
- For bare dies, probing technology is crucial

Membrane Contact

- The distance between the pads and the tuning components is reduced
- The membrane offers significant advantages for high-performance wafer test

Mechanical Probing Techniques

- Vertical probe was developed to fulfill the requirement for array configurations
 - Co-planarity
 - The demand on novel and expensive probe techniques is increased
- Solutions
 - MEMS-based implementations of probe cards
 - Noncontact testing

Noncontact Testing

• Each antenna and transceiver probes one I/O on the DUT with each I/O site on the DUT

Electrical Probing Techniques

- Testing RF and mix-signal ICs represents a big challenge due to the propagation of disturbed signal
- Wideband protocols add many constraints to the wafer probing
 - Membrane

Full Test and Burn-In Approaches

- A: Temporary pressure contacts
- B: Permanent contacts
 - TAB (Tape Automated Bonding) lead frame bonded
 - Testable ribbon bonding
 - Bare die carrier
- C: Semi-permanent contacts

Permanent Contacts

- Minimal package permanently assembled with die
- Die bounded into low cost carrier or tape
- TAB lead frame bonded to IC
 - Full test and burn-in is possible
 - TAB technology is expensive
- Testable ribbon bonding
 - Die ribbon bounded to low cost carrier
 - After test and burn-in ribbon cut, leaving TAB like die
- Bare Die carrier
 - No performance penalties
 - Easy carrier replacement

Design-Based Approaches

DFT

- Yield optimization loop
 - Yield learning; detection, analysis, and correction
- Architecture of IIP
 - Ensures manufacturability and lifetime reliability of SiP
- Embedding process monitoring IP
 - Test vehicle or test die
- Embedded test & repair IP
 - Embedded memory with redundancy
- Embedded debug & diagnosis IP
 - Collect failure data and analyze obtained data by off chip

Bare Substrate Testing

- Test for electrical integrity before attachment
 - Mechanical probing
 - Contactless electron-beam probing
- Prevent population of defective substrates
 - No possible to repair substrate
 - Dies damaged during removal
 - High cost
- Failure mechanisms
 - Short and open

Substrate Testing

- Known good substrate is required prior to bonding
- In-Process Testing
 - Intermediate tests during fabrication to access every wiring layer
 - Mainly contactless probing techniques
 - Helps process improvement and process control
- Final Testing
 - Before populating expensive bare dies

Substrate Testing Techniques

- Mechanical probing slow
 - Bed of nails traditional PCB testing
 - Moving test head
 - Single/double point flying probes capacitance and resistive, open, and short testing
 - Glow discharge optically detect opens and shorts
- Contactless probing fast
 - Automatic optical testing image analysis
 - Electron beam testing charge and read each pad

Outline

- Introduction
- System on Chip (SoC), Multichip
 Module(MCM), and System in Package (SiP)
- Bare Dies Testing
- System in Package Testing

SiP Assembly Process

- Incoming bare die test
- Mounting process
 - Mechanical placement
- SiP assembly test
 - Parametric test
 - Functional test
- Encapsulation
 - Molding a plastic body around substrate
- Burn-in
- Retest
- Rework

SiP Testing

- Die-to-die interconnection
 - Delay marginalities
- Die-to-die bonding
 - Electromechanical marginalities
- Marginal pad or die placement on the substrate can affect the yield
 - Electrical effects, such as crosstalk or bonding violation
- Need microprobing and traceability

System Test of SiP

- Functional test
 - Structural and performance test
 - Check application specifications and functionality
 - Require a complex test setup with expensive instruments
 - Long test times
 - Testing full paths makes diagnostics difficult
- Access methods

Test Challenges for SiP

- Accessibility
- Controllability
- Observability
- Failure localization
- Failure analysis
- Deep memory and mixed signal
- Design for test (DFT)

Functional System Test

- Advantage of functional test
 - Good correlation at the system lelvel
- Disadvantages
 - Complex test setup with expensive instruments
 - Long test times
 - Diagnostic difficulty
- Example:
 - Path-Based testing
 - Lookback techniques

Path-Based Testing

 Consider a system with a digital plus mixedsignal circuitry, an RF transceiver , and a power amplifier dies

Receiver Test

- The quality of a receiver is given by its bit error rate (BER)
- The BER test requires a lot of data to achieve the target accuracy
- A bit-error, p_e

$$p_{e} = 0.5 \cdot erfc \left(\sqrt{E_{b} / N_{o}} \right)$$
$$E_{b} = C / f_{b}$$

 N_o : the noise power spectral density E_b : the energy of the received bit C : the power of the carrier f_b : the data rate

Transmitter Test

- The transmitter channel is usually tested by measuring the error vector magnitude (EVM)
 - V(t) represents the transmitted signal, where I(t) and Q(t) are the data signals

Loopback Techniques-External

External

• Creating the loop between the output of PA and the input of LNA

Loopback techniques-Internal

Internal

- Creating the loop in the front-end IC
- Connecting the up-converter to LNA through TA, a complementary BIST sharing the circuitry with on-chip resources

57

Test Embedded Components

- Structural testing of interconnections between dies
- Structural or functional testing of dies themselves
- Challenge
 - Hard to access the dies from the I/Os of the SiP
- To improve the testability, SIP test access port (TAP) is placed on the bare dies
- To provide high quality structural test and failed element identification capability, BIST and boundaryscan are used

SiP Test Access Port

Features

- Access for die and interconnection tests
- SIP test enabling at system level
- Additional recursive test procedures during assembly
- ▶ IEEE 1149.1 and 1149.4
 - Boundary scans are used in bare dies
 - 1149.1 for digital dies and 1149.4 for mixed-signal or analog dies
- ▶ IEEE 1500
 - Designed for SoC test at system level

1149.1 Test Solution

1149.4 Test Solution

Ordered Assembly Strategy

- The assembly process may introduce additional failures
- Intermediate tests after every die soldering may be required
- Dies are assembled from the least to the most expensive dies to optimize the overall SiP cost

TAP Controller

- TAP must manage boundary scan resources during the incremental tests even while some dies are missing
- Two configurations are required
 - One is for the incremental test star
 - One is for the end-user test ring

Star TAP Controller

- The star configuration attempts to facilitate incremental testing during the assembly
 - The link between the dies is broken during the assembly

64

Ring TAP Controller

• The end-user cannot detect the presence of several dies in the ring configuration

• Only one TMS control signal is required

Interconnection

- The interconnection test is performed through boundary scan in *external test mode*
 - For k wire, log₂(2k+2) vectors are required to test
 bridging faults

Digital and Memory Dies

- External pads of an SiP are less
 - Integrate additional DFT for testing specific dies on another die
 - Implement a configurable DFT with software or programmable capabilities on another die
 - Use the transparent mode of other dies to directly control and observe from the primary I/O
- Example
 - The embedded memories are usually packaged without BIST circuit
 - The BIST circuit has to be implemented in another digital core
 - Dies without boundary scan

Transparent Mode

• Use a transparent mode of the other dies to control and observe from the I/O of the package

Hierarchical 1500 Test Solution

Features

- Easy and fast test interoperability at the core and subsystem layers
- Effective support for chip-to-chip interconnection test
- Definition of a standard approach for generating the chip-level and SiP-level test program

SiP with 1500

A single serial line is used as the TAM

It is useful for both chip-level and SiP-level test

SiP-Oriented Wrapper

- The wrapper is to provide test data to each core and capture results and to perform data conversion for transmission on the selected TAM
- A six-signal bus allows management of the wrapper serial structures by controlling data transfers to and form each core

Registers in a Wrapper

- The wrapper boundary register (WBR) is used as a boundary scan chain at core level
- The wrapper bypass register (WBY) has a single flip-flop to bypass test data to other cores
- The wrapper instruction register (WIR) receives the instruction and controls the multiplexers

1500 Wrapper

Core-to-core interconnection testing

1500 Wrapper

Chip-to-chip interconnection testing

SiP Memory Test

- Memory test time dominates product test flow and test platform choice
 - SoC tester and memory tester
- DFT for mixed-signal and memory is the better solution

Test of Memories without BIST

- Use dedicated chip with BIST
- Include BIST facilities in neighboring dice

Test of Die without Boundary Scan

- Use boundary scan chain of neighboring ASIC
 Memory arrays, glue logic, etc.
- Use dedicated boundary scan parts to create virtual boundary scan
 - Probe chip, octals, etc.

SiP Level BIST

- Effective self-test in autonomous manner
- Test controller embedded in SiP, instead of external test processor
- Embedded ASIC block or dedicated chip
- SiP technology drivers
 - High quality test
 - BIST can provide high test coverage
 - Performance test
 - BIST runs at system speed
 - Reliability test
 - •BIST runs during burn-in

Analog and RF Components

Challenges

- Cost reduction of the required test equipment
- Difficult to access the dies after assembly process
- Analog, mixed signals, and RF circuits require long functional test time
- Approaches
 - Move tester functions onto the chip itself BIST
 - Convert analog signals on-chip to timing delay information for ATE measurement
 - Use DFT techniques to internally transform the analog signals to digital signals
- Only digital signals are externally observed by lessexpensive digital tester

Analog Network of Converters

- Assume that DACs and ADCs are available
- Input and output signals are fully digital
- Both DAC-to-ADC and analog blocks paths can be tested

MEMS

- Test equipment is a problem for MEMS testing
- Two approaches
 - Perform an indirect structural or functional test
 - Implement DFT circuitry to convert the physical signal to an electrical signal
- Significant package influence is another challenge for MEMS testing
 - Hard to detect defective MEMS before packaging

MEMS Testing in SiP

- The classical problems are more serious
 - Adjacent dies might disturb and modify the MEMS quality
 - The test needs to generate and observe various nonelectrical signals for several MEMS in the same SiP
- The alternative techniques with only electrical signals are the only viable option

