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Introduction

®* Most SOC design teams now regard power as one
of their top design concerns
* Why low-power design?
— Battery lifetime (especially for portable devices)
— Reliability
®* Power consumption

— Peak power
— Average power
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Overview of Power Consumption

® Average power consumption
— Dynamic power consumption
— Short-circuit power consumption
— Leakage power consumption
— Static power consumption

* Dynamic power dissipation during switching

—/_ f Cinput :
j; —r interconnect _
I drain I input
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Overview of Power Consumption

* Generic representation of a CMOS logic gate for
switching power calculation

Va oMOS
Vg network
Vout
VA nMOS I Cdrain + Z Cinterconnect + Z Cinput
Vs network

— 1 /2 dVout T dVout
I:)avg — ?[J‘O Vout (_Cload T)dt + IT/z (VDD _Vout)(Cload T)dt]
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Overview of Power Consumption

®* The average power consumption can be expressed

as

P —1¢

2 _
avg T load VDD =C

load VDZD fCLK

®* The node transition rate can be slower than the
clock rate. To better represent this behavior, a
node transition factor (@) should be introduced

B 2
Pavg = a7 C Voo Tek

®* The switching power expressed above are derived
by taking into account the output node load
capacitance
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Overview of Power Consumption

V, _q[T Va / \ / \

Vinternal VB w
VB _'q[ E Cinternal V

Vadl Ve[ T Coad  Vout
v

The generalized expression for the average power dissipation
can be rewritten as

#ofnodes
Pavg :( Z aTiCiVijVDD fork
i—1
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Gate-Level Design — Technology Mapping

®* The objective of logic minimization is to reduce the
boolean function.

* For low-power design, the signal switching activity
IS minimized by restructuring a logic circuit

®* The power minimization is constrained by the
delay, however, the area may increase.

® During this phase of logic minimization, the
function to be minimized is

> P, (1-P))C,
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Gate-Level Design — Technology Mapping

* The first step in technology mapping is to decompose
each logic function into two-input gates

®* The objective of this decomposition is to minimizing the
total power dissipation by reducing the total switching

activity
A 0.2 —— ) 2=0.038¢
) o =0.019§

B 0.2 ] :>a;0.0099
C 05
D 05

5 —} AO2_____ = 0.0384
B 0.2 —— }
C 05 a =0.0099
D 0.5—— a=0.1875
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Gate-Level Design — phase Assignment

High activity node

/ \ High activity node
A >0 \
A N

B —> A

s —{>o
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Gate-Level Design — Pin Swapping
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Gate-Level Design — ciitching Power

* Glitches
— spurious transitions due to imbalanced path delays

® A design has more balanced delay paths
— has fewer glitches, and thus has less power dissipation

* Note that there will be no glitches in a dynamic CMOS
logic

A A /
/
B
B—}D o /
c Dl

\J
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Gate-Level Design — ciitching Power

® A chain structure has more glitches

® A tree structure has fewer glitches
A ——
-
C } Chain structure
: Ba

A
B —} D@_ Tree structure
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Gate-Level Design — precomputation
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Gate-Level Design — precomputation

A<n-1>
B<n-1>
A<n-2:0>
) >

Precomputation logic

B<n-2:0>
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Gate-Level Design — Gating Clock

Fail DFT rule

clk checking

T

Add control pin
to solve DFT
violation
problem

clk
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Gate-Level Design — input Gating

clk — t '
‘ ' select

f2

National Central University EE4012VLSI Design 17



Clock-Gating in Low-Power Flip-Flop

CK

Source: Prof. V. D. Agrawal
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Reduced-Power Shift Register

multiplexer

CK(f/2)

Flip-flops are operated at full voltage and half the clock frequency.

Source: Prof. V. D. Agrawal
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Power Consumption of Shift Register

16-bit shift register, 2u CMOS

P = C'Vpp2f/n
_ 1 .O ' :

0.25

1 33.0 1535 5
=
2 16.5 887 S
©
4 8.25 738 e 0.5
S
=
)
Z

C. Piguet, “Circuit and Logic Level

Design,” pages 103-133 in W. Nebel 0.0
and J. Mermet (ed.), Low Power 1 2 4
Design in Deep Submicron Degree of parallelism, n
Electronics, Springer, 1997.

Source: Prof. V. D. Agrawal
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Architecture-Level Design — parallelism

A 4

16 16
A — A , L
116 32
fos frefi2 7
16 >
B ——
fref ! frefi2
Assume that With the same 16x16
multiplier, the power supply can
be reduced from V, to V,/1.83.
V f f f ’
F)parallel = 2'2Cref ( = )2 — = O'33|:)ref 16 / 32
1.83 2 B
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Architecture-Level Design — pipelining

The hardware between the pipeline stages is reduced then
the reference voltage V., can be reduced to V|, to maintain
the same worst case defay. For example, let a BOMHz
multiplier is broken into two equal parts as shown below. The
delay between the pipeline stages can be remained at 50MHz
when the voltage V., is equal to V,_/1.83

32
(A ,B)

ref

Vref
pipeline = 1'2Cref (1 83
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Architecture-Level Design — Retiming

Retiming is a transformation technique used to change the
locations of delay elements in a circuit without affecting the
input/output characteristics of the circuit.

Two versions of an IR filter.
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Architecture-Level Design — Retiming

Retiming for pipeline design

(2ns)

ref
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Architecture-Level Design — Retiming

B
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Clock cycle is 4 gate delays
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Architecture-Level Design — Power Management
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Architecture-Level Design — Bus Segmentation

® Avoid the sharing of resources
— Reduce the switched capacitance

®* For example: a global system bus

— A single shared bus is connected to all modules, this
structure results in a large bus capacitance due to

* The large number of drivers and receivers sharing the same
bus

* The parasitic capacitance of the long bus line

®* A segmented bus structure

— Switched capacitance during each bus access is
significantly reduced

— Overall routing area may be increased
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Architecture-Level Design — Bus Segmentation
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Algorithmic-Level Design — f Reduction

activity

Minimization the switchin% activi;tjy, at high level, is one way to
reduce the power dissipation of digital processors.

One method to minimize the switching signals, at the algorithmic
level, is to use an appropriate coding for the signals rather than
straight binary code.

The table shown below shows a comparison of 3-bit representation
of the binary and Gray codes.

Binary Code Gray Code Decimal Equivalent

000 000 0
001 001 1
010 011 2
011 010 3
100 110 4
101 111 5
110 101 6
111 100 7
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State Encoding for a Counter

® Two-bit binary counter:
* State sequence, 00 - 01 - 10 - 11 — 00
* S1x bit transitions 1n four clock cycles
* 6/4 = 1.5 transitions per clock

®* Two-bit Gray-code counter
* State sequence, 00 - 01 — 11 — 10 — 00
* Four bit transitions 1n four clock cycles
*4/4 = 1.0 transition per clock

® Gray-code counter 1s more power efficient.

Source: Prof. V. D. Agrawal
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Binary Counter: Original Encoding

a
B 1 SN
b
¢ ._>O-‘ B
0 0 0 1 —
o | 1| 1| o _D—
1 0 1 1
1 1 0 0
A=ab + ab’ CK .
B=ab +ab CLR—’

Source: Prof. V. D. Agrawal
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Binary Counter: Gray Encoding

0 0 0 1
0 1 1 1
1 0 0 0
1 1 1 0
A=ab+ab
B=ab +ab

National Central University
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Source: Prof. V. D. Agrawal
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Three-Bit Counters

000 - 000 -
001 1 001 1
010 2 011 1
011 1 010 1
100 3 110 1
101 1 111 1
110 2 101 1
111 1 100 1
000 3 000 1

Source: Prof. V. D. Agrawal
National Central University EE4012VLSI Design 33



N-Bit Counter: Toggles in Counting Cycle

® Binary counter: T(binary) =2(2N - 1)

® Gray-code counter: T(gray) = 2N
® T(gray)/T(binary)=2N-1/2N-1) — 0.5

2

1 2 1.0

2 0.6667
3 14 8 0.5714
4 30 16 0.5333
5 62 32 0.5161
6 126 64 0.5079
o0 0.5000

Source: Prof. V. D. Agrawal
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FSM State Encoding

Transition
probability

based on
Pl statistics

Expected number of state-bit transitions:

State encoding can be selected using a power-based cost function.

Source: Prof. V. D. Agrawal
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FSM: Clock-Gating

®* Moore machine: Outputs depend only on the
state variables.

—If a state has a self-loop 1n the state transition
graph (STG), then clock can be stopped
whenever a self-loop 1s to be executed.

XilZk

Xk/Zk

Clock can be stopped
when (Xk, Sk) combination
occurs.

Source: Prof. V. D. Agrawal
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Clock-Gating in Moore FSM

Pl —@
@
Clock
activation — Latch
logic
CK I
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Bus Encoding for Reduced Power

®* Example: Four bit bus
* 0000 — 1110 has three transitions.

* |f bits of second pattern are inverted, then 0000 —
0001 will have only one transition.

® Bit-inversion encoding for N-bit bus:

N

Number of bit transitions
after inversion encoding
Z
N

0 N/2 N

Number of bit transitions
Source: Prof. V. D. Agrawal
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Sent data

Bus-Inversion Encoding Logic

N
//
/
d Polarity
decision
logic
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Polarity bit

Bus register
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Received data

Source: Prof. V. D. Agrawal
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RTL-Level Design — signal Gating

Simple Decoder

@)dule decoder (a, sel); \

input [1:0[ a;
ouput [3:0] sel;
reg [3:0] sel;

always @(a) begin
case (a)
2’b00: sel=4"b0001;
2’b01: sel=4"b0010;
2’b10: sel=4"b0100;
2’b11: sel=4’b1000;
endcase
end

endmodule

- /
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RTL-Level Design — Datapath Reordering

Initial Reordered

stable

glitchy

* v glitchy
A<B

stable
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RTL-Level Design — Memory Partition

ore_addr 8 addr[7:0]

din

clk

addrO

128x32

addr dout
write

noe

addr[7:1]

B

din

noe

write
addr dout

128x32

XC
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RTL-Level Design — Memory Partition

* Application-driven memory partition

64K bytes

Data
Addr

R/W

National Central University

Reads
A
>
< »le—ple »| Addr
28K 4K 32K Range
64K
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RTL-Level Design — Memory Partition

* A power-optimal partitioned memory organization
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