<Design Compiler>

LAB

2012/12/05

1. Copy files

≻ cp ▲ -r ▲ /home/areslab/LAB-DV-12 ▲ ./

LAB file list		
Folder	Name	Description
syn	cpu.v	netlist
MEM	RAM_64B_fast@0C_syn.lib	
	RAM_64B_fast@-40C_syn.lib	
	RAM_64B_typical_syn.lib	Memory libraries
	RAM_64B_slow_syn.lib	
	RAM_64B.v	
tbench	tcpu.v	testbench
	tsmc18.v	verilog model
script	dv_script.tcl	script file
	.synopsys_dc.setup	setup file for Design
		Compiler
REPORT		Report
WORK		gate level netlist
		waveform file

2. Synthesis Using <Design Compiler>

• File preparations:

- ➢ cpu.v (RTL code)
 - in this step, you must be sure that the RTL code is well verified. For example, c-model and RTL co-verification, coding style checking using n-Lint, code coverage checking using VN,...etc.
- *.db files (i.e. translated from *.lib on dc_shell platform):
 - RAM_64B_fast@0C_syn.db, RAM_64B_fast@-40C_syn.db, RAM_64B_typical_syn.db, and RAM_slow_syn.db
 - The memory library files (*.lib) are generated by Artisan Memory Compiler
 - The DB files translation
 - $> dc_shell-t$
 - dc_shell-t> read_lib RAM_64B_slow_syn.lib
 - dc_shell-t>write_lib USERLIB -o RAM_64B_slow_syn.db

script file

• Edit the script file

Step 1: Translate *.lib files to *.db files

Step 2: Run verilog simulation in [tbench]. You can observe

the waveforms using nWave before synthesis.

> ncverilog +access+rwc tcpu.v ../syn/cpu.v

≻ nWave&

> open tcpu_rtl.vcd

Step 3: Edit the files <cpu.v> in [syn] and

<.synopsys_dc.setup> in [script] for synthesis.

- RTL modification:
 - All memories and black boxes should be blocked in cpu.v

//`include "../MEM/RAM_64B.v"

- Edit .synopsys_dc.setup in [script] folder:
 - Add a "search path" to this file

set search_path "../MEM/ \$search_path"

Add the memory *.db files to the "link library" and "target library"

set link_library "RAM_64B_slow_syn.db"

set target_library "RAM_64B_slow_syn.db...."

- Edit script file <dv_script.tcl> in [script]:
- **Step 1: Specify design**
- Step 2: Set don't used cells (slow, typical, and fast libraries)

```
CLKBUF*, CLKINV*, TIE*, SDF*, and SEDF* cells
```

Step 3: Read files (read cpu.v in verilog format)

"../syn/cpu.v"

Step 4: Set current design as "cpu" and uniquify the design

Step 5: Set operating environment (set both maximum and minimum as "slow" library)

Step 6: Set clk period 10ns

Set don't touch network to "clk" and "rst" signals

Set fix hold to clk

Set clock skews (both hold and setup uncertainties)

Step 7: Set input and output delay 2ns

Set input drive 0.288001pf

Set output load 0.06132pf

Set maximum input transition as 0.11ns

Step 8: Set fanout constraint = 32

Set area constraint = 0

Step 9: Set compile effort as high

• Open design compiler in [script] and read script:

>dv

File -> Execute Script

> dv> exit

• After the synthesis, read the area and timing reports in [REPORT]:

- Area report in <cpu.area>
- Setup time report in <cpu.rpt.maxtiming>
- Hold time report in <cpu.rpt.mintiming>
- Run verilog simulation after synthesis in [tbench] and observe the waveform using nWave:
 - ncverilog +access+rwc tcpu.v ../WORK/cpu.vg ../MEM/RAM_64B.v -v

tsmc18.v +define+SYNTHESIS ON

- ➢ nWave&
- open tcpu_syn.vcd

實驗報告內容:

1. 實驗目的

- 2. 附上<cpu. area>與<cpu. rpt. maxitiming>的結果
- 列出合成後的面積(total cell area) um²,其中記憶體 (RAM_64B)占了多少um²?
- 列出合成後的Setup data arrival time與Setup time slack,並解釋data arrival time與slack的意義。