
Synthesizable Coding of
Verilog

Speaker: Y. –X. Chen

REF:
•Verilog Training Manual, CIC, July, 2008
•Reuse Methodology Manual – For System-ON-A-Chip Design, Third Edition 2002
•Logic Synthesis with Design Complier, CIC , July, 2008

Advanced Reliable
Systems (ARES) Lab.

1

Nov. 2012

11/21
 課程主題: Synthesizable Verilog & Coding
 學習目標

 Synthesizable coding style in Verilog
 Syntax check with nLint

 LAB1簡介-撰寫simple 8-bit microprocessor之Verilog code
 步驟一:RTL coding並使用nLint確定為可合成之code
 步驟二:使用修正好的RTL netlist跑simulation，並觀察波型

Advanced Reliable Systems (ARES) Lab. 2

Advanced Reliable Systems (ARES) Lab.

Outline
 Basic of Logic Synthesis Concept
 Basic Concept of Verilog HDL
 Synthesizable Verilog
 LAB 1-1: Design Rule Check with nLint
 Tips for Verilog Design
 LAB 1-2: RTL Simulation

3

Advanced Reliable Systems (ARES) Lab.

Basic Concept of the Synthesis

4

Advanced Reliable Systems (ARES) Lab.

Cell-Based Design Flow

MATLAB/ C/ C++/ System C/
ADS/ Covergen (MaxSim)

NC-Verilog/ ModelSim
Debussy (Verdi)/ VCS

Verilog/ VHDL

Design/ Power Compiler

DFT Compiler/ TetraMAX

NC-Verilog/ ModelSim
Debussy (Verdi)/ VCS

SOC Encounter/ Astro

DRC/ LVS (Calibre)

PVS: Calibre xRC/ NanoSim
(Time/ Power Mill)

Ph
ys

ic
al

 C
om

pi
le

r/
M

ag
m

a
B

la
st

 F
us

io
nConformal/

Formality

Memory Generator

Syntest

Spec.

Tape Out

GDS II

System Level

RTL Level

Logic Synthesis

Design for Test

Gate Level

Layout Level

Post-Layout
Verification

5

Advanced Reliable Systems (ARES) Lab.

What is Synthesis
 Synthesis = translation + optimization + mapping

if(high_bits == 2’b10)begin
residue = state_table[i];

end
else begin
residue = 16’h0000;

end Translate (HDL Compiler)

Optimize + Mapping
(HDL Compiler)

HDL Source
(RTL)

Generic Boolean
(GTECT)

Target Technology

No Timing Info.

Timing Info.

The synthesis is constraint driven
and technology independent !!

6

Advanced Reliable Systems (ARES) Lab.

 Your RTL design
 Functional verification by some high-level language

 Also, the code coverage of your test benches should be verified (i.e. VN)
 Coding style checking (i.e. n-Lint)

 Good coding style will reduce most hazards while synthesis
 Better optimization process results in better circuit performance
 Easy debugging after synthesis

 Constraints
 The area and timing of your circuit are mainly determined by your

circuit architecture and coding style
 There is always a trade-off between the circuit timing and area
 In fact, a super tight timing constraint may be worked while synthesis,

but failed in the Place & Route (P&R) procedure

Notice Before Synthesis
Area

Cycle
Time

Better

7

Advanced Reliable Systems (ARES) Lab.

Basic Concept of Verilog HDL

8

Verilog Model
 Key features of Verilog
 Supports various level of abstraction
 Switch level model or transistor level model
 Gate level model
 Data flow model or register transfer model
 Behavioral model

Advanced Reliable Systems (ARES) Lab. 9

Register Transfer Level (RTL)

Advanced Reliable Systems (ARES) Lab. 10

Gate Level Model
 Model consists of basic logic
 Ex. AND, NAND, OR, NOR, XOR, NOT, etc.

Advanced Reliable Systems (ARES) Lab. 11

Verilog Module

module module_name(port_names);
•Port declaration
•Data type declaration
•Task & function declaration
•Module functionality or structure
•Timing Specification

endmodule

/* This is sample code.
The function is ALU.
*/
module ALU(a,b,sel,out);
input [7:0] a,b; //Data in
output[7:0]out; //Data out
input [2:0]sel; //Control select

reg [7:0]out;
wire …
…
always@(...)begin
…
end
…
endmodule

12Advanced Reliable Systems (ARES) Lab.

Verilog Syntax
 Verilog consists of a series token
 Comment: //, /* */
 operators: unary, binary, ternary
 A=~B;
 A=B&C;
 C=SEL?A:B;

 Numbers: size, unsized
 Sized: 4’b0010, 8’ha

 Identifiers: $, #, etc.
 Keywords
 …

Advanced Reliable Systems (ARES) Lab. 13

Verilog Syntax (Cont’d)
 always@ statement
 Blocking
 Non-blocking

Advanced Reliable Systems (ARES) Lab. 14

always @ (posedge clk) begin
x_temp<=x;

end

always @ (a or x_temp)begin
if (a) begin

x= x_temp+1’b1;
end
else begin

x= x_temp;
end

Verilog Syntax (Cont’d)
 Case statement
 If-else statement

Advanced Reliable Systems (ARES) Lab. 15

always @ (d) begin
case (d)

2'b00: z=1'b1;
2'b01: z=1'b0;
default : z=1'b0;

endcase
end

always @ (a or x_temp)begin
if (a) begin

x= x_temp+1’b1;
end
else begin

x= x_temp;
end

Connection Manners

Advanced Reliable Systems (ARES) Lab. 16

net/register net
net

net/register

input output

inout

net

net

Advanced Reliable Systems (ARES) Lab.

Synthesizable Verilog

17

Importance of Coding Style
 Make sure your code is readable, modifiable,

and reusable
 Good coding style helps to achieve better results

in synthesis and simulation

Advanced Reliable Systems (ARES) Lab. 18

Concept of Clocks and Reset

Advanced Reliable Systems (ARES) Lab. 19

QD D QCBL

clk

QD D QCBL

clk

QD D Q

clk

Gated Clocks

Mixed Clock Edges

CBL

Combination Feedback

Synchronous

Asynchronous and Synchronous Reset

 Synchronous reset

 Asynchronous reset

Advanced Reliable Systems (ARES) Lab. 20

always@(posedge clock)begin
if (rst) begin
…………….
end
…

end

always@(posedge clock or negedge reset)
if (!rst) begin
………………
end
…

end

Synthesizable Verilog
 Not all kinds of Verilog constructs can be

synthesized
 Only a subset of Verilog constructs can be

synthesized and the code containing only this
subset is synthesizable

Advanced Reliable Systems (ARES) Lab. 21

Synthesizable Verilog (Cont’)

Advanced Reliable Systems (ARES) Lab. 22

 Verilog Basis
 parameter declarations
 wire, wand, wor

declarations
 reg declarations
 input, output, inout
 continuous assignment
 module instructions
 gate instructions
 always blocks
 task statement
 function definitions
 for, while loop

 Synthesizable Verilog
primitives cells
 and, or, not, nand, nor, xor,

xnor
 bufif0, bufif1, notif0, notif1

 Can not use for Synthesis
===
!==
/ (division)
% (modulus)

delay
Initial
repeat
forever
wait
fork
join
event

Synthesizable Verilog (Cont’)

Advanced Reliable Systems (ARES) Lab. 23

 Operators
 Concatenation ({ }, {{}})
 Unary reduction (!, ~, &, |, ^)
 2’s complement arithmetic (+, -, *)
 Logic shift (>>, <<)
 Relational (>, <, >=, <=)
 Equality (==, !=)
 Binary bit-wise (&, |, ^, ~^)
 Logical (&&, ||)
 Conditional (?:)

highest

precedence

lowest

Coding for Synthesis
 Combinational Blocks

24

 Sequential Blocks

always @ (d) begin
case (d)

2'b00: z=1'b1;
2'b01: z=1'b0;
default : z=1'b0;

endcase
end

always @ (a or x_temp)begin
if (a) begin

x= x_temp+1’b1;
end
else begin

x= x_temp;
end

always @ (posedge clk)begin
if (a) begin

z<=1’b1;
end
else begin

z<=1’b0;
end

end

Advanced Reliable Systems (ARES) Lab.

Coding for Synthesis (Cont’)
 Avoid Combinational Feedback

25

always @ (a or x)begin
if (a) begin

x= x+1’b1;
end
else begin

x= x;
end

always @ (posedge clk) begin
x_temp<=x;

end

always @ (a or x_temp)begin
if (a) begin

x= x_temp+1’b1;
end
else begin

x= x_temp;
end

Advanced Reliable Systems (ARES) Lab.

Coding for Synthesis (Cont’)
 Blocking Assignment

26

 Non-Blocking Assignment

always @ (posedge clk)begin
b=a;
c=b;

end

always @ (posedge clk)begin
b<=a;
c<=b;

end

Just like “a=c;” Just like “shift register”

QD

clk

QD D Q

clk

a b ca b c

Advanced Reliable Systems (ARES) Lab.

Coding for Synthesis (Cont’)
 Avoid Latches

27

always @ (d) begin
case (d)

2'b00: z=1'b1;
2'b01: z=1'b0;
default : z=1'b0;

endcase
end

always @ (posedge clk)begin
if (a) begin

z<=1b1;
end
else begin

z<=1’b0;
end

end

always @ (d)begin
if (a) begin
............
end
else begin
...........
end

end

always @ (d) begin
x=1’b0;
z=1’b0;
case (d)

2'b00: begin z=1'b1; x=1’b1; end
2'b01: begin z=1'b0; end
default : begin z=1'b0; end

endcase
end

Advanced Reliable Systems (ARES) Lab.

Coding for Synthesis (Cont’)
 Sensitivity List

28

always @ (d) begin
case (d)

2'b00: z=1'b1;
2'b01: z=1'b0;
default : z=1'b0;

endcase
end

always @ (a or b or c or d)begin
if (a) begin
............
end
else begin

if (b)begin
z=c;

end
else begin

z=d;
end

end
end

Advanced Reliable Systems (ARES) Lab.

Coding for Synthesis (Cont’)
 Case statements

29

 if – else statements
always @ (sel or a or b or c or d)
begin

if (sel==2'b00) out=a;
else if (sel==2'b01) out=b;
else if (sel==2'b10) out=c;
else out=d;

end

always @ (sel or a or b or c or
d)begin

case (sel)
2'b00:out=a;
2'b01:out=b;
2'b10:out=c;
2'b11:out=d;

endcase
end

a
b
c
d

sel

out
00
01
10
11 0

1

0
1

0
1

d
c

b
a

sel

out

Advanced Reliable Systems (ARES) Lab.

Advanced Reliable Systems (ARES) Lab.

Lab 1-1
Design Rule Check with nLint

30

Design Rule Check
 Use nLint tool (include by Debussy) and the

Verilog Coding Guideline to check your design
and modify parts of code to match the coding
guidelines

Advanced Reliable Systems (ARES) Lab. 31

Start nLint
 Unix% nLint –gui &

Advanced Reliable Systems (ARES) Lab. 32

Load Verilog Code (1/2)

Advanced Reliable Systems (ARES) Lab. 33

Load Verilog Code (2/2)

Advanced Reliable Systems (ARES) Lab. 34

Run nLint Check

Advanced Reliable Systems (ARES) Lab. 35

Compile

nLint Check Result (1/2)

Advanced Reliable Systems (ARES) Lab. 36

nLint Check Results (2/2)

Advanced Reliable Systems (ARES) Lab. 37

Advanced Reliable Systems (ARES) Lab.

Lab Time

38

11/28
 課程主題: Synthesizable Verilog & Coding
 學習目標

 Tips for Verilog Design
 RTL simulation
 Waveform viewer – nWave / Debussy

 LAB1簡介-撰寫simple 8-bit microprocessor之Verilog code
並模擬結果
 步驟一:RTL coding並使用nLint確定為可合成之code
 步驟二:使用修正好的RTL netlist跑simulation，並觀察波型

Advanced Reliable Systems (ARES) Lab. 39

Advanced Reliable Systems (ARES) Lab.

Outline
 Basic of Logic Synthesis Concept
 Basic Concept of Verilog HDL
 Synthesizable Verilog
 LAB 1-1: Design Rule Check with nLint
 Tips for Verilog Design
 LAB 1-2: RTL Simulation

40

Advanced Reliable Systems (ARES) Lab.

Tips for Verilog Design

41

Pre-RTL Preparation Checklist
 Communicate design issues with your team
 Naming conventions, revision control, directory tree

and other design organizations
 Have a specification for your design
 Everyone should have a specification before they start

coding
 Design partition
 Follow the specification’s recommendations for

partition
 Break the design into major function blocks

Advanced Reliable Systems (ARES) Lab. 42

RTL Coding Style
 Create a block level drawing of your design

before you begin coding
 Draw a block diagram of the function and sub-function

of your design
 Always think of the poor guy who has to read

your RTL code
 Correlate “top to bottom in the RTL description” with

left to right in block diagram
 Comments and headers

 Hierarchy design

Advanced Reliable Systems (ARES) Lab. 43

Basic Coding Practices
 Naming Conventions
 Use lowercase letters for all signal names, and port

names, versus uppercase letters for names of
constants and user-defined types

 Use meaningful names
 For active low signals, end the signal name with an

underscore followed by a lowercase character (e.g.,
rst_ or rst_n)

 Recommend using “bus[X:0]” for multi-bit signals

Advanced Reliable Systems (ARES) Lab. 44

Basic Coding Practices (Cont’)
 Include Headers in Source Files and Comments

45Advanced Reliable Systems (ARES) Lab.

Basic Coding Practices (Cont’)
 Indentation

46

 Port Maps and Generic
Maps

Advanced Reliable Systems (ARES) Lab.

Basic Coding Practices (Cont’)
 Use Functions or Tasks
 Which Instead of repeating the same sections of code

47Advanced Reliable Systems (ARES) Lab.

Write Efficient HDL Code

 Use parentheses control complex structure
of a design

 Resource Sharing
 Scalable design and propagate constant value
 Use operator bit-width efficiently
 Timescale

Advanced Reliable Systems (ARES) Lab. 48

Use Parentheses Properly

 out=a+b+c+d+e  out=((a+(b+c))+(d+e));

49

a b

c

d

e

out

c b

a d e

out

Advanced Reliable Systems (ARES) Lab.

Resource Sharing
 Operations can be shared if they lie in the same

always blocks

Advanced Reliable Systems (ARES) Lab. 50

Scalable Design & Constant

parameter size=8;
wire [3:0] a,b,c,d,e;

assign a=size+2;
assign b=a+1;
assign c=d+e;

51

Constant
Increaser
Adder

Advanced Reliable Systems (ARES) Lab.

Use Operator Bit-width Efficiently

Advanced Reliable Systems (ARES) Lab. 52

module fixed_multiplier(a,b,c);
input [8:0] a, b;
output [8:0] c;
reg [15:0] tmp;
reg [8:0] c;
assign tmp = a*b;
assign c = tmp(15,8);
endmodule

Timescale
 `timescale: which declares the time unit and precision.

 `timescale <time_unit> / <time_precision>
 e.g. : `timescale 1s/1ps, to advance 1 sec, the timewheel scans its queues

1012 times versus a `timescale 1s/1ms, where it only scans the queues
103 times.

 The time_precision must be at least as precise as the time_unit.
 Keep precision as close in scale to the time units as is practical.
 If not specified, the simulator may assign a default timescale

unit.
 The smallest precision of all the timescale directive determines

the “simulation time unit ” of the simulation.

53Advanced Reliable Systems (ARES) Lab.

Omit for Synthesis
 Omit the Wait for XX ns Statement
 Do not use “#XX;”

 Omit the ...After XX ns or Delay Statement
 Do not use “assign #XX Q=0;”

 Omit initial values
 Do not use “initial sum = 1’b0;”

Advanced Reliable Systems (ARES) Lab. 54

Non-Synthesizable Style
 Either non-synthesizable or incorrect after

synthesis
 initial block is forbidden (non-synthesizable)
 Multiple assignments (multiple driving sources)
 Mixed blocking and non-blocking assignment

Advanced Reliable Systems (ARES) Lab. 55

Summary
 No initial in the RTL code
 Avoid unnecessary latches
 Avoid combinational feedback
 For sequential blocks, use non-blocking

statement
 For combinational blocks, use blocking

statements

Advanced Reliable Systems (ARES) Lab. 56

Advanced Reliable Systems (ARES) Lab.

Lab 1-2
RTL Simulation

57

Tools
 Simulators
 Verilog-XL, NC-Verilog, Altera Quartus, ModelSim and

etc.
 Synthesizers
 Design vision, Ambit, and etc.

 Debugger and verification tools
 Debussy, nWave, nLint, and etc.
 nLint can check the correctness of your code’s syntax

58

Verilog Simulator

Advanced Reliable Systems (ARES) Lab. 59

Run Verilog Simulation(1/2)
 Method 1:
 unix% verilog alu.v t_alu.v
 unix% ncverilog +access+r alu.v t_alu.v
 Method 2:
 Using additional file alu.f

alu.v
t_alu.v

 unix% verilog -f alu.f
 unix% ncverilog +access+r -f alu.f

 Method 3:
 Using additional description `include “module_file”

60Advanced Reliable Systems (ARES) Lab.

Run Verilog Simulation(2/2)

61Advanced Reliable Systems (ARES) Lab.

Testbench
 Compare this with your design

Advanced Reliable Systems (ARES) Lab. 62

module testfixture;
•Declare signals
•Instantiate modules
•Applying stimulus
•Monitor signals

endmodule

FSDB File
 Waveform file format
 Add commands in testbench

Advanced Reliable Systems (ARES) Lab. 63

// testbench.v
module …();
…
initial begin

$fsdbDumpfile(“abcd.fsdb”);
$fsdbDumpvars;

End
…
endmodule

Example of Testbench

//alu.v
/* This is sample code.
The function is ALU.
*/
module ALU(a,b,sel,out);
input [7:0] a,b; //Data in
output[7:0]out; //Data out
input [2:0]sel; //Control select

reg [7:0]out;
wire …
…
always@(...)begin
…
end
…
endmodule

//t_alu.v
/* This is testbench of sample code.
The function is ALU.
*/
module test_ALU;
reg [7:0] A,B;
reg[2:0]SEL;
wire[7:0] OUT;

ALU U0(.a(A),.b(B),.sel(SEL),.out(OUT));
always #5 B=~B;
initial
begin

A=0;B=0;SEL=0;
#10 A=0;SEL=1;
#10 SEL=0;
…..
#10 SEL=1;

#10 $finish;
end
initial begin

$fsdbDumpfile(“ALU.fsdb”);
$fsdbDumpvars;

end
endmodule

64Advanced Reliable Systems (ARES) Lab.

Debussy – Getting Start

 Using nWave or Debussy
 unix% nWave&
 unix% debussy&

65Advanced Reliable Systems (ARES) Lab.

Get Signals
 Select “Signal” -> “Get Signal”

Advanced Reliable Systems (ARES) Lab. 66

Observe Waveform

Advanced Reliable Systems (ARES) Lab. 67

Change Radix

Advanced Reliable Systems (ARES) Lab. 68

Save Waveform

Advanced Reliable Systems (ARES) Lab. 69

Advanced Reliable Systems (ARES) Lab.

LAB Time

70

