
Synthesizable Coding of
Verilog

Speaker: Y. –X. Chen

REF:
•Verilog Training Manual, CIC, July, 2008
•Reuse Methodology Manual – For System-ON-A-Chip Design, Third Edition 2002
•Logic Synthesis with Design Complier, CIC , July, 2008

Advanced Reliable
Systems (ARES) Lab.

1

Nov. 2012

11/21
 課程主題: Synthesizable Verilog & Coding
 學習目標

 Synthesizable coding style in Verilog
 Syntax check with nLint

 LAB1簡介-撰寫simple 8-bit microprocessor之Verilog code
 步驟一:RTL coding並使用nLint確定為可合成之code
 步驟二:使用修正好的RTL netlist跑simulation，並觀察波型

Advanced Reliable Systems (ARES) Lab. 2

Advanced Reliable Systems (ARES) Lab.

Outline
 Basic of Logic Synthesis Concept
 Basic Concept of Verilog HDL
 Synthesizable Verilog
 LAB 1-1: Design Rule Check with nLint
 Tips for Verilog Design
 LAB 1-2: RTL Simulation

3

Advanced Reliable Systems (ARES) Lab.

Basic Concept of the Synthesis

4

Advanced Reliable Systems (ARES) Lab.

Cell-Based Design Flow

MATLAB/ C/ C++/ System C/
ADS/ Covergen (MaxSim)

NC-Verilog/ ModelSim
Debussy (Verdi)/ VCS

Verilog/ VHDL

Design/ Power Compiler

DFT Compiler/ TetraMAX

NC-Verilog/ ModelSim
Debussy (Verdi)/ VCS

SOC Encounter/ Astro

DRC/ LVS (Calibre)

PVS: Calibre xRC/ NanoSim
(Time/ Power Mill)

Ph
ys

ic
al

 C
om

pi
le

r/
M

ag
m

a
B

la
st

 F
us

io
nConformal/

Formality

Memory Generator

Syntest

Spec.

Tape Out

GDS II

System Level

RTL Level

Logic Synthesis

Design for Test

Gate Level

Layout Level

Post-Layout
Verification

5

Advanced Reliable Systems (ARES) Lab.

What is Synthesis
 Synthesis = translation + optimization + mapping

if(high_bits == 2’b10)begin
residue = state_table[i];

end
else begin
residue = 16’h0000;

end Translate (HDL Compiler)

Optimize + Mapping
(HDL Compiler)

HDL Source
(RTL)

Generic Boolean
(GTECT)

Target Technology

No Timing Info.

Timing Info.

The synthesis is constraint driven
and technology independent !!

6

Advanced Reliable Systems (ARES) Lab.

 Your RTL design
 Functional verification by some high-level language

 Also, the code coverage of your test benches should be verified (i.e. VN)
 Coding style checking (i.e. n-Lint)

 Good coding style will reduce most hazards while synthesis
 Better optimization process results in better circuit performance
 Easy debugging after synthesis

 Constraints
 The area and timing of your circuit are mainly determined by your

circuit architecture and coding style
 There is always a trade-off between the circuit timing and area
 In fact, a super tight timing constraint may be worked while synthesis,

but failed in the Place & Route (P&R) procedure

Notice Before Synthesis
Area

Cycle
Time

Better

7

Advanced Reliable Systems (ARES) Lab.

Basic Concept of Verilog HDL

8

Verilog Model
 Key features of Verilog
 Supports various level of abstraction
 Switch level model or transistor level model
 Gate level model
 Data flow model or register transfer model
 Behavioral model

Advanced Reliable Systems (ARES) Lab. 9

Register Transfer Level (RTL)

Advanced Reliable Systems (ARES) Lab. 10

Gate Level Model
 Model consists of basic logic
 Ex. AND, NAND, OR, NOR, XOR, NOT, etc.

Advanced Reliable Systems (ARES) Lab. 11

Verilog Module

module module_name(port_names);
•Port declaration
•Data type declaration
•Task & function declaration
•Module functionality or structure
•Timing Specification

endmodule

/* This is sample code.
The function is ALU.
*/
module ALU(a,b,sel,out);
input [7:0] a,b; //Data in
output[7:0]out; //Data out
input [2:0]sel; //Control select

reg [7:0]out;
wire …
…
always@(...)begin
…
end
…
endmodule

12Advanced Reliable Systems (ARES) Lab.

Verilog Syntax
 Verilog consists of a series token
 Comment: //, /* */
 operators: unary, binary, ternary
 A=~B;
 A=B&C;
 C=SEL?A:B;

 Numbers: size, unsized
 Sized: 4’b0010, 8’ha

 Identifiers: $, #, etc.
 Keywords
 …

Advanced Reliable Systems (ARES) Lab. 13

Verilog Syntax (Cont’d)
 always@ statement
 Blocking
 Non-blocking

Advanced Reliable Systems (ARES) Lab. 14

always @ (posedge clk) begin
x_temp<=x;

end

always @ (a or x_temp)begin
if (a) begin

x= x_temp+1’b1;
end
else begin

x= x_temp;
end

Verilog Syntax (Cont’d)
 Case statement
 If-else statement

Advanced Reliable Systems (ARES) Lab. 15

always @ (d) begin
case (d)

2'b00: z=1'b1;
2'b01: z=1'b0;
default : z=1'b0;

endcase
end

always @ (a or x_temp)begin
if (a) begin

x= x_temp+1’b1;
end
else begin

x= x_temp;
end

Connection Manners

Advanced Reliable Systems (ARES) Lab. 16

net/register net
net

net/register

input output

inout

net

net

Advanced Reliable Systems (ARES) Lab.

Synthesizable Verilog

17

Importance of Coding Style
 Make sure your code is readable, modifiable,

and reusable
 Good coding style helps to achieve better results

in synthesis and simulation

Advanced Reliable Systems (ARES) Lab. 18

Concept of Clocks and Reset

Advanced Reliable Systems (ARES) Lab. 19

QD D QCBL

clk

QD D QCBL

clk

QD D Q

clk

Gated Clocks

Mixed Clock Edges

CBL

Combination Feedback

Synchronous

Asynchronous and Synchronous Reset

 Synchronous reset

 Asynchronous reset

Advanced Reliable Systems (ARES) Lab. 20

always@(posedge clock)begin
if (rst) begin
…………….
end
…

end

always@(posedge clock or negedge reset)
if (!rst) begin
………………
end
…

end

Synthesizable Verilog
 Not all kinds of Verilog constructs can be

synthesized
 Only a subset of Verilog constructs can be

synthesized and the code containing only this
subset is synthesizable

Advanced Reliable Systems (ARES) Lab. 21

Synthesizable Verilog (Cont’)

Advanced Reliable Systems (ARES) Lab. 22

 Verilog Basis
 parameter declarations
 wire, wand, wor

declarations
 reg declarations
 input, output, inout
 continuous assignment
 module instructions
 gate instructions
 always blocks
 task statement
 function definitions
 for, while loop

 Synthesizable Verilog
primitives cells
 and, or, not, nand, nor, xor,

xnor
 bufif0, bufif1, notif0, notif1

 Can not use for Synthesis
===
!==
/ (division)
% (modulus)

delay
Initial
repeat
forever
wait
fork
join
event

Synthesizable Verilog (Cont’)

Advanced Reliable Systems (ARES) Lab. 23

 Operators
 Concatenation ({ }, {{}})
 Unary reduction (!, ~, &, |, ^)
 2’s complement arithmetic (+, -, *)
 Logic shift (>>, <<)
 Relational (>, <, >=, <=)
 Equality (==, !=)
 Binary bit-wise (&, |, ^, ~^)
 Logical (&&, ||)
 Conditional (?:)

highest

precedence

lowest

Coding for Synthesis
 Combinational Blocks

24

 Sequential Blocks

always @ (d) begin
case (d)

2'b00: z=1'b1;
2'b01: z=1'b0;
default : z=1'b0;

endcase
end

always @ (a or x_temp)begin
if (a) begin

x= x_temp+1’b1;
end
else begin

x= x_temp;
end

always @ (posedge clk)begin
if (a) begin

z<=1’b1;
end
else begin

z<=1’b0;
end

end

Advanced Reliable Systems (ARES) Lab.

Coding for Synthesis (Cont’)
 Avoid Combinational Feedback

25

always @ (a or x)begin
if (a) begin

x= x+1’b1;
end
else begin

x= x;
end

always @ (posedge clk) begin
x_temp<=x;

end

always @ (a or x_temp)begin
if (a) begin

x= x_temp+1’b1;
end
else begin

x= x_temp;
end

Advanced Reliable Systems (ARES) Lab.

Coding for Synthesis (Cont’)
 Blocking Assignment

26

 Non-Blocking Assignment

always @ (posedge clk)begin
b=a;
c=b;

end

always @ (posedge clk)begin
b<=a;
c<=b;

end

Just like “a=c;” Just like “shift register”

QD

clk

QD D Q

clk

a b ca b c

Advanced Reliable Systems (ARES) Lab.

Coding for Synthesis (Cont’)
 Avoid Latches

27

always @ (d) begin
case (d)

2'b00: z=1'b1;
2'b01: z=1'b0;
default : z=1'b0;

endcase
end

always @ (posedge clk)begin
if (a) begin

z<=1b1;
end
else begin

z<=1’b0;
end

end

always @ (d)begin
if (a) begin
............
end
else begin
...........
end

end

always @ (d) begin
x=1’b0;
z=1’b0;
case (d)

2'b00: begin z=1'b1; x=1’b1; end
2'b01: begin z=1'b0; end
default : begin z=1'b0; end

endcase
end

Advanced Reliable Systems (ARES) Lab.

Coding for Synthesis (Cont’)
 Sensitivity List

28

always @ (d) begin
case (d)

2'b00: z=1'b1;
2'b01: z=1'b0;
default : z=1'b0;

endcase
end

always @ (a or b or c or d)begin
if (a) begin
............
end
else begin

if (b)begin
z=c;

end
else begin

z=d;
end

end
end

Advanced Reliable Systems (ARES) Lab.

Coding for Synthesis (Cont’)
 Case statements

29

 if – else statements
always @ (sel or a or b or c or d)
begin

if (sel==2'b00) out=a;
else if (sel==2'b01) out=b;
else if (sel==2'b10) out=c;
else out=d;

end

always @ (sel or a or b or c or
d)begin

case (sel)
2'b00:out=a;
2'b01:out=b;
2'b10:out=c;
2'b11:out=d;

endcase
end

a
b
c
d

sel

out
00
01
10
11 0

1

0
1

0
1

d
c

b
a

sel

out

Advanced Reliable Systems (ARES) Lab.

Advanced Reliable Systems (ARES) Lab.

Lab 1-1
Design Rule Check with nLint

30

Design Rule Check
 Use nLint tool (include by Debussy) and the

Verilog Coding Guideline to check your design
and modify parts of code to match the coding
guidelines

Advanced Reliable Systems (ARES) Lab. 31

Start nLint
 Unix% nLint –gui &

Advanced Reliable Systems (ARES) Lab. 32

Load Verilog Code (1/2)

Advanced Reliable Systems (ARES) Lab. 33

Load Verilog Code (2/2)

Advanced Reliable Systems (ARES) Lab. 34

Run nLint Check

Advanced Reliable Systems (ARES) Lab. 35

Compile

nLint Check Result (1/2)

Advanced Reliable Systems (ARES) Lab. 36

nLint Check Results (2/2)

Advanced Reliable Systems (ARES) Lab. 37

Advanced Reliable Systems (ARES) Lab.

Lab Time

38

11/28
 課程主題: Synthesizable Verilog & Coding
 學習目標

 Tips for Verilog Design
 RTL simulation
 Waveform viewer – nWave / Debussy

 LAB1簡介-撰寫simple 8-bit microprocessor之Verilog code
並模擬結果
 步驟一:RTL coding並使用nLint確定為可合成之code
 步驟二:使用修正好的RTL netlist跑simulation，並觀察波型

Advanced Reliable Systems (ARES) Lab. 39

Advanced Reliable Systems (ARES) Lab.

Outline
 Basic of Logic Synthesis Concept
 Basic Concept of Verilog HDL
 Synthesizable Verilog
 LAB 1-1: Design Rule Check with nLint
 Tips for Verilog Design
 LAB 1-2: RTL Simulation

40

Advanced Reliable Systems (ARES) Lab.

Tips for Verilog Design

41

Pre-RTL Preparation Checklist
 Communicate design issues with your team
 Naming conventions, revision control, directory tree

and other design organizations
 Have a specification for your design
 Everyone should have a specification before they start

coding
 Design partition
 Follow the specification’s recommendations for

partition
 Break the design into major function blocks

Advanced Reliable Systems (ARES) Lab. 42

RTL Coding Style
 Create a block level drawing of your design

before you begin coding
 Draw a block diagram of the function and sub-function

of your design
 Always think of the poor guy who has to read

your RTL code
 Correlate “top to bottom in the RTL description” with

left to right in block diagram
 Comments and headers

 Hierarchy design

Advanced Reliable Systems (ARES) Lab. 43

Basic Coding Practices
 Naming Conventions
 Use lowercase letters for all signal names, and port

names, versus uppercase letters for names of
constants and user-defined types

 Use meaningful names
 For active low signals, end the signal name with an

underscore followed by a lowercase character (e.g.,
rst_ or rst_n)

 Recommend using “bus[X:0]” for multi-bit signals

Advanced Reliable Systems (ARES) Lab. 44

Basic Coding Practices (Cont’)
 Include Headers in Source Files and Comments

45Advanced Reliable Systems (ARES) Lab.

Basic Coding Practices (Cont’)
 Indentation

46

 Port Maps and Generic
Maps

Advanced Reliable Systems (ARES) Lab.

Basic Coding Practices (Cont’)
 Use Functions or Tasks
 Which Instead of repeating the same sections of code

47Advanced Reliable Systems (ARES) Lab.

Write Efficient HDL Code

 Use parentheses control complex structure
of a design

 Resource Sharing
 Scalable design and propagate constant value
 Use operator bit-width efficiently
 Timescale

Advanced Reliable Systems (ARES) Lab. 48

Use Parentheses Properly

 out=a+b+c+d+e out=((a+(b+c))+(d+e));

49

a b

c

d

e

out

c b

a d e

out

Advanced Reliable Systems (ARES) Lab.

Resource Sharing
 Operations can be shared if they lie in the same

always blocks

Advanced Reliable Systems (ARES) Lab. 50

Scalable Design & Constant

parameter size=8;
wire [3:0] a,b,c,d,e;

assign a=size+2;
assign b=a+1;
assign c=d+e;

51

Constant
Increaser
Adder

Advanced Reliable Systems (ARES) Lab.

Use Operator Bit-width Efficiently

Advanced Reliable Systems (ARES) Lab. 52

module fixed_multiplier(a,b,c);
input [8:0] a, b;
output [8:0] c;
reg [15:0] tmp;
reg [8:0] c;
assign tmp = a*b;
assign c = tmp(15,8);
endmodule

Timescale
 `timescale: which declares the time unit and precision.

 `timescale <time_unit> / <time_precision>
 e.g. : `timescale 1s/1ps, to advance 1 sec, the timewheel scans its queues

1012 times versus a `timescale 1s/1ms, where it only scans the queues
103 times.

 The time_precision must be at least as precise as the time_unit.
 Keep precision as close in scale to the time units as is practical.
 If not specified, the simulator may assign a default timescale

unit.
 The smallest precision of all the timescale directive determines

the “simulation time unit ” of the simulation.

53Advanced Reliable Systems (ARES) Lab.

Omit for Synthesis
 Omit the Wait for XX ns Statement
 Do not use “#XX;”

 Omit the ...After XX ns or Delay Statement
 Do not use “assign #XX Q=0;”

 Omit initial values
 Do not use “initial sum = 1’b0;”

Advanced Reliable Systems (ARES) Lab. 54

Non-Synthesizable Style
 Either non-synthesizable or incorrect after

synthesis
 initial block is forbidden (non-synthesizable)
 Multiple assignments (multiple driving sources)
 Mixed blocking and non-blocking assignment

Advanced Reliable Systems (ARES) Lab. 55

Summary
 No initial in the RTL code
 Avoid unnecessary latches
 Avoid combinational feedback
 For sequential blocks, use non-blocking

statement
 For combinational blocks, use blocking

statements

Advanced Reliable Systems (ARES) Lab. 56

Advanced Reliable Systems (ARES) Lab.

Lab 1-2
RTL Simulation

57

Tools
 Simulators
 Verilog-XL, NC-Verilog, Altera Quartus, ModelSim and

etc.
 Synthesizers
 Design vision, Ambit, and etc.

 Debugger and verification tools
 Debussy, nWave, nLint, and etc.
 nLint can check the correctness of your code’s syntax

58

Verilog Simulator

Advanced Reliable Systems (ARES) Lab. 59

Run Verilog Simulation(1/2)
 Method 1:
 unix% verilog alu.v t_alu.v
 unix% ncverilog +access+r alu.v t_alu.v
 Method 2:
 Using additional file alu.f

alu.v
t_alu.v

 unix% verilog -f alu.f
 unix% ncverilog +access+r -f alu.f

 Method 3:
 Using additional description `include “module_file”

60Advanced Reliable Systems (ARES) Lab.

Run Verilog Simulation(2/2)

61Advanced Reliable Systems (ARES) Lab.

Testbench
 Compare this with your design

Advanced Reliable Systems (ARES) Lab. 62

module testfixture;
•Declare signals
•Instantiate modules
•Applying stimulus
•Monitor signals

endmodule

FSDB File
 Waveform file format
 Add commands in testbench

Advanced Reliable Systems (ARES) Lab. 63

// testbench.v
module …();
…
initial begin

$fsdbDumpfile(“abcd.fsdb”);
$fsdbDumpvars;

End
…
endmodule

Example of Testbench

//alu.v
/* This is sample code.
The function is ALU.
*/
module ALU(a,b,sel,out);
input [7:0] a,b; //Data in
output[7:0]out; //Data out
input [2:0]sel; //Control select

reg [7:0]out;
wire …
…
always@(...)begin
…
end
…
endmodule

//t_alu.v
/* This is testbench of sample code.
The function is ALU.
*/
module test_ALU;
reg [7:0] A,B;
reg[2:0]SEL;
wire[7:0] OUT;

ALU U0(.a(A),.b(B),.sel(SEL),.out(OUT));
always #5 B=~B;
initial
begin

A=0;B=0;SEL=0;
#10 A=0;SEL=1;
#10 SEL=0;
…..
#10 SEL=1;

#10 $finish;
end
initial begin

$fsdbDumpfile(“ALU.fsdb”);
$fsdbDumpvars;

end
endmodule

64Advanced Reliable Systems (ARES) Lab.

Debussy – Getting Start

 Using nWave or Debussy
 unix% nWave&
 unix% debussy&

65Advanced Reliable Systems (ARES) Lab.

Get Signals
 Select “Signal” -> “Get Signal”

Advanced Reliable Systems (ARES) Lab. 66

Observe Waveform

Advanced Reliable Systems (ARES) Lab. 67

Change Radix

Advanced Reliable Systems (ARES) Lab. 68

Save Waveform

Advanced Reliable Systems (ARES) Lab. 69

Advanced Reliable Systems (ARES) Lab.

LAB Time

70

