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 課程主題: Synthesizable Verilog & Coding
 學習目標

 Synthesizable coding style in Verilog
 Syntax check with nLint

 LAB1簡介-撰寫simple 8-bit microprocessor之Verilog code
 步驟一:RTL coding並使用nLint確定為可合成之code
 步驟二:使用修正好的RTL netlist跑simulation，並觀察波型

Advanced Reliable Systems (ARES) Lab. 2



Advanced Reliable Systems (ARES) Lab.

Outline
 Basic of Logic Synthesis Concept
 Basic Concept of Verilog HDL
 Synthesizable Verilog
 LAB 1-1: Design Rule Check with nLint
 Tips for Verilog Design
 LAB 1-2: RTL Simulation
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Basic Concept of the Synthesis
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Cell-Based Design Flow

MATLAB/ C/ C++/ System C/ 
ADS/ Covergen (MaxSim)

NC-Verilog/ ModelSim
Debussy (Verdi)/ VCS

Verilog/ VHDL

Design/ Power Compiler

DFT Compiler/ TetraMAX

NC-Verilog/ ModelSim
Debussy (Verdi)/ VCS

SOC Encounter/ Astro

DRC/ LVS (Calibre)

PVS: Calibre xRC/ NanoSim
(Time/ Power Mill)
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System Level

RTL Level

Logic Synthesis

Design for Test

Gate Level
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What is Synthesis
 Synthesis = translation + optimization + mapping

if(high_bits == 2’b10)begin
residue = state_table[i];

end
else begin
residue = 16’h0000;

end Translate (HDL Compiler)

Optimize + Mapping 
(HDL Compiler)

HDL Source
(RTL)

Generic Boolean
(GTECT)

Target Technology

No Timing Info.

Timing Info.

The synthesis is constraint driven 
and technology independent !!
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 Your RTL design
 Functional verification by some high-level language

 Also, the code coverage of your test benches should be verified (i.e. VN)
 Coding style checking (i.e. n-Lint)

 Good coding style will reduce most hazards while synthesis
 Better optimization process results in better circuit performance
 Easy debugging after synthesis

 Constraints 
 The area and timing of your circuit are mainly determined by your 

circuit architecture and coding style
 There is always a trade-off between the circuit timing and area
 In fact, a super tight timing constraint may be worked while synthesis, 

but failed in the Place & Route (P&R) procedure

Notice Before Synthesis
Area

Cycle
Time

Better
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Basic Concept of Verilog HDL
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Verilog Model
 Key features of Verilog
 Supports various level of abstraction
 Switch level model or transistor level model
 Gate level model
 Data flow model or register transfer model
 Behavioral model
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Register Transfer Level (RTL)
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Gate Level Model
 Model consists of basic logic
 Ex. AND, NAND, OR, NOR, XOR, NOT, etc.
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Verilog Module

module module_name(port_names);
•Port declaration
•Data type declaration
•Task & function declaration
•Module functionality or structure
•Timing Specification

endmodule

/* This is sample code.
The function is ALU.
*/
module ALU(a,b,sel,out);
input [7:0] a,b; //Data in
output[7:0]out; //Data out
input [2:0]sel; //Control select

reg [7:0]out;
wire …
…
always@(...)begin
…
end
…
endmodule
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Verilog Syntax
 Verilog consists of a series token
 Comment: //, /*   */
 operators: unary, binary, ternary
 A=~B;
 A=B&C;
 C=SEL?A:B;

 Numbers: size, unsized
 Sized: 4’b0010, 8’ha

 Identifiers: $, #, etc.
 Keywords
 …

Advanced Reliable Systems (ARES) Lab. 13



Verilog Syntax (Cont’d)
 always@ statement
 Blocking
 Non-blocking
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always @ (posedge clk) begin
x_temp<=x;

end

always @ (a or x_temp)begin
if (a) begin

x= x_temp+1’b1;
end
else begin

x= x_temp;
end



Verilog Syntax (Cont’d)
 Case statement
 If-else statement
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always @ (d) begin
case (d)

2'b00: z=1'b1;
2'b01: z=1'b0;
default : z=1'b0;

endcase
end

always @ (a or x_temp)begin
if (a) begin

x= x_temp+1’b1;
end
else begin

x= x_temp;
end



Connection Manners
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net/register net
net

net/register

input output

inout

net

net
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Synthesizable Verilog
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Importance of Coding Style
 Make sure your code is readable, modifiable, 

and reusable
 Good coding style helps to achieve better results 

in synthesis and simulation

Advanced Reliable Systems (ARES) Lab. 18



Concept of Clocks and Reset
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QD D QCBL

clk

QD D QCBL

clk

QD D Q

clk

Gated Clocks

Mixed Clock Edges

CBL

Combination Feedback

Synchronous



Asynchronous and Synchronous Reset

 Synchronous reset

 Asynchronous reset
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always@(posedge clock)begin 
if (rst) begin
…………….
end
…

end

always@(posedge clock or negedge reset)
if (!rst) begin
………………
end
…

end



Synthesizable Verilog
 Not all kinds of Verilog constructs can be 

synthesized
 Only a subset of Verilog constructs can be 

synthesized and the code containing only this 
subset is synthesizable
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Synthesizable Verilog (Cont’)
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 Verilog Basis
 parameter declarations
 wire, wand, wor

declarations
 reg declarations
 input, output, inout
 continuous assignment
 module instructions
 gate instructions
 always blocks
 task statement
 function definitions
 for, while loop

 Synthesizable Verilog 
primitives cells
 and, or, not, nand, nor, xor, 

xnor
 bufif0, bufif1, notif0, notif1

 Can not use for Synthesis
===
!==
/ (division)
% (modulus)

delay
Initial
repeat   
forever 
wait            
fork
join 
event



Synthesizable Verilog (Cont’)
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 Operators
 Concatenation ( { }, {{}} )
 Unary reduction ( !,  ~, &, |, ^ )
 2’s complement arithmetic ( +, -, *)
 Logic shift ( >>, << )
 Relational ( >, <, >=, <= )
 Equality ( ==, != )
 Binary bit-wise ( &, |, ^, ~^ )
 Logical ( &&, || )
 Conditional ( ?: )

highest

precedence

lowest



Coding for Synthesis
 Combinational Blocks
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 Sequential Blocks

always @ (d) begin
case (d)

2'b00: z=1'b1;
2'b01: z=1'b0;
default : z=1'b0;

endcase
end

always @ (a or x_temp)begin
if (a) begin

x= x_temp+1’b1;
end
else begin

x= x_temp;
end

always @ (posedge clk )begin
if (a) begin

z<=1’b1;
end
else begin

z<=1’b0;
end

end
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Coding for Synthesis (Cont’)
 Avoid Combinational Feedback
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always @ (a or x)begin
if (a) begin

x= x+1’b1;
end
else begin

x= x;
end

always @ (posedge clk) begin
x_temp<=x;

end

always @ (a or x_temp)begin
if (a) begin

x= x_temp+1’b1;
end
else begin

x= x_temp;
end
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Coding for Synthesis (Cont’)
 Blocking Assignment
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 Non-Blocking Assignment

always @ (posedge clk )begin
b=a;
c=b;

end

always @ (posedge clk )begin
b<=a;
c<=b;

end

Just like “a=c;” Just like “shift register”

QD

clk

QD D Q

clk

a b ca b c
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Coding for Synthesis (Cont’)
 Avoid Latches
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always @ (d) begin
case (d)

2'b00: z=1'b1;
2'b01: z=1'b0;
default : z=1'b0;

endcase
end

always @ (posedge clk )begin
if (a) begin

z<=1b1;
end
else begin

z<=1’b0;
end

end

always @ (d)begin
if (a) begin
............
end
else begin
...........
end

end

always @ (d) begin
x=1’b0;
z=1’b0;
case (d)

2'b00: begin z=1'b1; x=1’b1; end
2'b01: begin z=1'b0;              end
default : begin z=1'b0;           end

endcase
end
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Coding for Synthesis (Cont’)
 Sensitivity List
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always @ (d) begin
case (d)

2'b00: z=1'b1;
2'b01: z=1'b0;
default : z=1'b0;

endcase
end

always @ (a or b or c or d)begin
if (a) begin
............
end
else begin

if (b)begin
z=c;  

end
else begin

z=d;
end

end
end
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Coding for Synthesis (Cont’)
 Case statements 

29

 if – else statements 
always @ ( sel or a or b or c or d) 
begin

if (sel==2'b00) out=a;
else if (sel==2'b01) out=b;
else if (sel==2'b10) out=c;
else out=d;

end

always @ ( sel or a or b or c or 
d)begin

case (sel)
2'b00:out=a;
2'b01:out=b;
2'b10:out=c;
2'b11:out=d;

endcase
end

a
b
c
d

sel

out
00
01
10
11 0

1

0
1

0
1

d
c

b
a

sel

out
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Lab 1-1 
Design Rule Check with nLint
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Design Rule Check
 Use nLint tool (include by Debussy) and the 

Verilog Coding Guideline to check your design 
and modify parts of code to match the coding 
guidelines
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Start nLint
 Unix% nLint –gui &
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Load Verilog Code (1/2)
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Load Verilog Code (2/2)
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Run nLint Check
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Compile



nLint Check Result (1/2)
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nLint Check Results (2/2)
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Lab Time
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 課程主題: Synthesizable Verilog & Coding
 學習目標

 Tips for Verilog Design
 RTL simulation
 Waveform viewer – nWave / Debussy

 LAB1簡介-撰寫simple 8-bit microprocessor之Verilog code
並模擬結果
 步驟一:RTL coding並使用nLint確定為可合成之code
 步驟二:使用修正好的RTL netlist跑simulation，並觀察波型
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Outline
 Basic of Logic Synthesis Concept
 Basic Concept of Verilog HDL
 Synthesizable Verilog
 LAB 1-1: Design Rule Check with nLint
 Tips for Verilog Design
 LAB 1-2: RTL Simulation
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Tips for Verilog Design
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Pre-RTL Preparation Checklist
 Communicate design issues with your team
 Naming conventions, revision control, directory tree 

and other design organizations
 Have a specification for your design
 Everyone should have a specification before they start 

coding
 Design partition
 Follow the specification’s recommendations for 

partition
 Break the design into major function blocks
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RTL Coding Style
 Create a block level drawing of your design 

before you begin coding
 Draw a block diagram of the function and sub-function 

of your design
 Always think of the poor guy who has to read 

your RTL code
 Correlate “top to bottom in the RTL description” with 

left to right in block diagram
 Comments and headers

 Hierarchy design
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Basic Coding Practices
 Naming Conventions
 Use lowercase letters for all signal names, and port 

names, versus uppercase letters for names of 
constants and user-defined types

 Use meaningful names
 For active low signals, end the signal name with an 

underscore followed by a lowercase character (e.g., 
rst_ or rst_n)

 Recommend using “bus[X:0]” for multi-bit signals
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Basic Coding Practices (Cont’)
 Include Headers in Source Files and Comments
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Basic Coding Practices (Cont’)
 Indentation
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 Port Maps and Generic 
Maps
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Basic Coding Practices (Cont’)
 Use Functions or Tasks
 Which Instead of repeating the same sections of code
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Write Efficient HDL Code

 Use parentheses control complex structure 
of a design

 Resource Sharing
 Scalable design and propagate constant value
 Use operator bit-width efficiently
 Timescale
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Use Parentheses Properly

 out=a+b+c+d+e  out=((a+(b+c))+(d+e));

49

a b

c

d

e

out

c b

a d e

out
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Resource Sharing
 Operations can be shared if they lie in the same 

always blocks
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Scalable Design & Constant

parameter size=8;
wire [3:0] a,b,c,d,e;

assign a=size+2;
assign b=a+1;
assign c=d+e;

51

Constant
Increaser
Adder
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Use Operator Bit-width Efficiently
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module fixed_multiplier(a,b,c);
input [8:0] a, b;
output [8:0] c;
reg [15:0] tmp;
reg [8:0] c;
assign tmp = a*b;
assign c = tmp(15,8);
endmodule



Timescale
 `timescale: which declares the time unit and precision.

 `timescale <time_unit> / <time_precision>
 e.g. : `timescale 1s/1ps, to advance 1 sec, the timewheel scans its queues 

1012 times versus a `timescale 1s/1ms, where it only scans the queues 
103 times.

 The time_precision must be at least as precise as the time_unit.
 Keep precision as close in scale to the time units as is practical.
 If not specified, the simulator may assign a default timescale 

unit.
 The smallest precision of all the timescale directive determines 

the “simulation time unit ” of the simulation.
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Omit for Synthesis
 Omit the Wait for XX ns Statement
 Do not use “#XX;”

 Omit the ...After XX ns or Delay Statement
 Do not use “assign #XX Q=0;”

 Omit initial values
 Do not use “initial sum = 1’b0;”
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Non-Synthesizable Style
 Either non-synthesizable or incorrect after 

synthesis
 initial block is forbidden (non-synthesizable)
 Multiple assignments (multiple driving sources)
 Mixed blocking and non-blocking assignment
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Summary
 No initial in the RTL code
 Avoid unnecessary latches
 Avoid combinational feedback
 For sequential blocks, use non-blocking 

statement
 For combinational blocks, use blocking 

statements
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Lab 1-2
RTL Simulation
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Tools
 Simulators
 Verilog-XL, NC-Verilog, Altera Quartus, ModelSim and 

etc.
 Synthesizers
 Design vision, Ambit, and etc.

 Debugger and verification tools
 Debussy, nWave, nLint, and etc.
 nLint can check the correctness of  your code’s syntax
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Verilog Simulator

Advanced Reliable Systems (ARES) Lab. 59



Run Verilog Simulation(1/2)
 Method 1:
 unix% verilog alu.v t_alu.v
 unix% ncverilog +access+r alu.v t_alu.v
 Method 2:
 Using additional file alu.f

alu.v
t_alu.v

 unix% verilog -f alu.f
 unix% ncverilog +access+r -f alu.f

 Method 3:
 Using additional description `include “module_file”
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Run Verilog Simulation(2/2)
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Testbench
 Compare this with your design
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module testfixture;
•Declare signals
•Instantiate modules
•Applying stimulus
•Monitor signals

endmodule



FSDB File
 Waveform file format
 Add commands in testbench
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// testbench.v
module …();
…
initial begin

$fsdbDumpfile(“abcd.fsdb”);
$fsdbDumpvars;

End
…
endmodule



Example of Testbench

//alu.v
/* This is sample code.
The function is ALU.
*/
module ALU(a,b,sel,out);
input [7:0] a,b; //Data in
output[7:0]out; //Data out
input [2:0]sel; //Control select

reg [7:0]out;
wire …
…
always@(...)begin
…
end
…
endmodule

//t_alu.v
/* This is testbench of sample code.
The function is ALU.
*/
module test_ALU;
reg [7:0] A,B;
reg[2:0]SEL;
wire[7:0]  OUT;

ALU U0(.a(A),.b(B),.sel(SEL),.out(OUT));
always #5 B=~B;
initial
begin

A=0;B=0;SEL=0;
#10  A=0;SEL=1;
#10  SEL=0;
…..
#10  SEL=1;

#10     $finish;
end
initial begin

$fsdbDumpfile(“ALU.fsdb”);
$fsdbDumpvars;

end
endmodule
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Debussy – Getting Start

 Using nWave or Debussy
 unix% nWave&
 unix% debussy&

65Advanced Reliable Systems (ARES) Lab.



Get Signals
 Select “Signal” -> “Get Signal”
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Observe Waveform
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Change Radix
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Save Waveform
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LAB Time
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