
1

3-1

Logic Simulation

Prof. Chien-Nan Liu
TEL: 03-4227151 ext:34457
Email: jimmy@ee.ncu.edu.tw

3-2

Simulation
Simulation replace the prototype with a software
model
Simulate the circuit behavior before realization

2

3-3

Applications of Simulation
Design verification:

Function
Timing
Independent of initial states
Insensitive to parameter variation
Race and hazard free

Other purposes:
Evaluate alternative designs
Evaluate design changes
Documentation
………

3-4

Types of Simulations
Primary approaches for simulations:

Compiler-Driven
Table-Driven
Event-Driven
Cycle-Based

Compiler-Driven: (Compiled Code Simulation)
The circuit behavior is compiled into a executable
program
The response can be obtained by calling the
program with inputs as the argument
Faster, but lack of observability for internal nodes

3

3-5

Compiled Code Simulation

Load
AND
AND
Store
Load
OR
INV
OR
Store

A
B
C
F
D
E

F
H

A
B
C
D
E

F

G
H

H = Simulation (1,0,1,0,1)

3-6

Table-Driven Simulation

An interpreter is used to translate the
circuit into internal data structure (table)
Simulation is done by manipulating such
data structure in a predetermined order

Called the “topological order”
Cannot be applied to sequential circuit
simulation

Feedback cannot be handled

4

3-7

Table-Driven Simulation

A
B
C
D
E

F

G
H

Node
A
B
C
D
E
F
G
H

Fanin
-
-
-
-
-

A,B,C
D,E
F,G

Fanout
F
F
F
G
G
H
H
-

Type
PI
PI
PI
PI
PI

AND
OR
OR

Value
1
0
1
0
1
0
1
1

For (I=0 to n)
Evaluate Gate i

Gates are indexed by the signal dependency graph
Topological sort

Gates are evaluated in the predetermined order
Fanout may not be needed

3-8

Event-Driven Simulation
Based on table-driven simulation
Event: a change of value in a signal

A value change may affect several processes
All processes affected are executed in zero time
All resulting signal changes are scheduled in the
time wheel
Advance to the time next event is scheduled
Process that event

Only process the activated part of the circuit

5

3-9

Algorithms for EDS

While (event-list != 0)
advance time wheel
determine current events
update values
propagate events
evaluate active events
schedule new events

R

S

Q

-Q

R
0
-
1
-
-
0
-
-
-

S
1
0
-
-
-
-
1
-
-

Q
1
-
-
0
-
-
-
-
1

-Q
0
-
-
-
1
-
-
0
-

Time
0
1
2

2.1
2.2
3
4

4.1
4.2

Process a series of ordered events
event-list : pending events
time-wheel: simulation time

3-10

Delta Delay

Infinitesimally small delay
Models hardware where
a minimal amount of time
is needed for a change to
occur

Even in zero delay
simulation

Allows for ordering of
events that occur at the
same simulation time

A

20 ns

B

C

Z

20+1Δ 20+2Δ 20+3Δ

A B C Z

6

3-11

Simulation Example
reg A, B;

always @(B)
begin

A = 1;
A = #5 0;

end

always @(A)
begin

if (A==1)
B = #10 ~B;

end

3-12

Gate-Level Event Driven Simulation
Global Routine

While (event-list not empty)
advance time wheel to the next time t
Process event entries for time t

Event Process
Activated = 0
for (every event Ei pending at t)

Assign Ni value Vi
Put Fanout j into Activated
for (every j in Activated)

Evaluate Vj
if (Vj’ != Vj) Schedule Ej at time t + Dj

7

3-13

Gate-Level Event Driven Simulation
Disadvantage

A node may be schedule more than once at one time
slot if there are more than one input change
A node may be scheduled more than once within the

gate inertial delay
Solution 1

Sort the gates/nodes according to signal dependency
Give each gate a index to indicate its logic depth, the
number of gates from primary inputs
For each time stamp, process the event with smaller
logic_depth index first

Solution 2
Remove the previous events if they are within the gate
inertial delay

3-14

Gate-Level Event Driven Simulation

Time Wheel Issue
The delay can be any real number
Sorting the events according is time consuming
(log2N)

Solutions
Delay is discretized by using a “resolution”

e.g. 10ps

Delay is an integer multiple of the resolution
Each entry in the timing wheel represents the list
of events happing in that time slot
The insertion of event is trivial

8

3-15

Cycle-Based Simulation
Event-Driven:

Timing accurate
Better debug environment
Simulation speed is slower

Cycle-Based:
Perform evaluations just before the triggering clock edge

Repeatedly triggered events are evaluated only once in a
clock cycle
Applicable to synchronous designs only

Faster simulation time (5x – 100x)
Only cycle-accurate
Require other tools (ex: STA) to check timing problems

Clock

Input

Output

3-16

Logic Values

Two-Valued Logic
0 (Logic Zero) and 1 (Logic One)

Three-Valued Logic
0 (Logic Zero), 1 (Logic 1), X (Unknown)

Multi-Valued Logic
Multiple values to represent multiple bits
Number of bits = Log2 (number of values)
None binary operations
Used in I/O and high density memories

9

3-17

Logic Values in Verilog

Four-Valued Logic is used
0 (Logic Zero), 1 (Logic 1), X (Unknown),
Z (High Impedance)

3-State Logic (high impedance)
Report conflicts or potential conflicts
if two or more drivers are activated
Require an uncertain for the case
when the bus is high impedance

A

B

C

D

3-18

Wired Logic

Wired-AND, Wired-OR
Use an equivalent AND or OR gate to replace
the wired net
EX:

wand D;
assign D = A1 | A2;
assign D = B1 | B2;
assign D = C1 | C2;

A

B

C

D

10

3-19

Other Logic Values
MOS Logic / Switching Level

Boolean logic has uni-directional signal flow
MOS Circuit / Switching Level has bi-directional
signal flow
Gates can store charge to make it a dynamic latch
Charge decay is another issue
Charge sharing is another issue

Possible Solutions
Use logic strength to represent the amount of charge
Use device strength to represent the ability to charge
or discharge

3-20

Logic Values in VHDL
Standard Logic:

‘U’ -- Uninitialized
‘X’ -- Forcing unknown
‘0’ -- Forcing 0
‘1’ -- Forcing 1
‘Z’ -- High impedance
‘W’ -- Weak unknown
‘L’ -- Weak 0
‘H’ -- Weak 1
‘-’ -- Don’t care

11

3-21

Resolution Function

3-22

Logic Evaluation

Based on look-up table for each gate
Truth tables for 2-valued logic:

A
0
0
1
1

B
0
1
0
1

AND
0
0
0
1

A
0
0
1
1

B
0
1
0
1

OR
0
1
1
1

A
0
0
1
1

B
0
1
0
1

XOR
0
1
1
0

12

3-23

4-Valued Logic

Truth table for 4-valued logic:

AND
‘X’
‘0’
‘1’
‘Z’

‘X’
‘X’
‘0’
‘X’
‘X’

‘0’
‘0’
‘0’
‘0’
‘0’

‘1’
‘X’
‘0’
‘1’
‘X’

‘Z’
‘X’
‘0’
‘X’
‘X’

OR
‘X’
‘0’
‘1’
‘Z’

‘X’
‘X’
‘X’
‘1’
‘X’

‘0’
‘X’
‘0’
‘1’
‘X’

‘1’
‘1’
‘1’
‘1’
‘1’

‘Z’
‘X’
‘X’
‘1’
‘X’

3-24

Control value C will dominate the output value
Use input scan first can determine the output
values more quickly
Example

NAND (Ai)
for every input Ai

if Ai = C then retuen Output=1
return Output = 0

Control Values:
AND : C=0; OR : C=1.

Control Values

13

3-25

Delay Model

Zero delay: no delay in gate
Unit delay: all the gates have an delay of 1 unit
Distributed delay: assign circuit dependent delay

Transition-independent delay
Rise/Fall delay
Ambiguous delay model (minimal, nominal, maximal)

Module path delay: assign delay values from
inputs to outputs

3-26

Delay Assignments
Transition-independent delay

assign #5 b = a;
Rise/Fall delay

assign #(5,20) c = d; // (rise_time, fall_time)
Ambiguous delay model

assign #(95:100:105) clk = 1; // (min: typ: max)
Module path delay

specify
(A => Q) = (10,8);
(B => Q) = (12,16);

end specify

Q
A

B

(10,8)

(12,16)

14

3-27

Hazard Detection

Static Hazard -
Unnecessary transition
when there is no signal
change

Dynamic Hazard -
Unnecessary extra
transition when signal
changes from 0 to 1 or
from 1 to 0

1
0
1
0

1
0
1
0

1
0
1
0

3-28

Inertial Delay
Minimum pulse width

Input value must be stable for specified delay
before value is allowed to propagate to the
output

Example:
Z <= A after 10 ns;

(output) (input value)

A Z

delay = 10 ns

A

Z

5 8 10 25 28 30 45 48

20 40

skipped skipped

15

3-29

Inertial Delay

It is often found in digital circuits
Results of setup time and hold time

The default delay model in both Verilog
and VHDL
Used to filter unwanted spikes and
transients on signals

3-30

Transport Delay
Models hardware that does not exhibit
inertial delay
Represents pure propagation delay
Example:
Z <= transport A after 10 ns;

A Z

delay = 10 ns

A

Z

5 8 10 25 28 30 45 48

20 4015 18 35 5538

16

3-31

Transport and Inertial Delays
Signal_name <= reject pulse-width expression after delay-time;
Z1 <= transport X after 10 ns; -- transport delay
Z2 <= X after 10 ns; -- inertial delay
Z3 <= reject 4ns X after 10 ns;

X

10

Z1

Z2

Z3

20 30 40 500

10ns

10ns

3ns

2ns

5ns

3-32

Value Change Dump (VCD) Files

VCD files can record every
value change during
simulation

Changing at which time
Changing to what value

A simple ASCII format
Widely used for post-
processing after simulation

Waveform viewer

time1
<new_value><variable1>
<new_value><variable2>

time2
<new_value><variable1>
<new_value><variable2>

.....
.....

17

3-33

An Example of Dumpfiles

X

10

Z1

Z2

Z3

20 30 40 500

10ns

10ns

3ns

2ns

5ns

$date
March 3, 2002 10:08:08

$end
$version

VERILOG-XL 3.10.p001
$end
$timescale

1ns
$end

$scope module test $end
$var reg 1 ! X $end
$var reg 1 " Z1 $end
$var reg 1 # Z2 $end
$var reg 1 $ Z3 $end

$upscope $end
$enddefinitions $end

$dumpvars
0!
0"
0#
0$
$end

#10
1!
#20
0!
1"
1#
1$

#30
1!
0"
0#
0$
#33
0!

#35
1!
#40
0!
1"
#43
0"

#45
1"
1$
#50
0"
0$

no. of bits

3-34

What is PLI ?

PLI = Programming Language Interface

PLI is an interface mechanism for users to
Link their applications to the simulator

Share the internal data structure of the
simulator

18

3-35

Verilog PLI Routines
In Verilog, there are three kinds of PLI routines :

TF (task/function) routines
ACC (access) routines
VPI (Verilog procedural interface) routines

TF and ACC routines are supported by almost
all simulators

often classified as PLI 1.0
VPI routines have better capabilities for users
but not supported by all simulators

Often classified as PLI 2.0

3-36

How to Use the PLI ?

Create your
C routine

Make table entries
in veriuser.c

Use vconfig to
compile and link

the simulator, your C
routine, and veriuser.c

New Verilog
executable

Run the new
Verilog with the
HDL description

/* in file hdl.v */
module test ;

……
initial begin

……
$hello ;

end
endmodule

19

3-37

Your C Routine

#include <stdio.h>
#include "veriuser.h"

int hello()
{

io_printf("hello from the task!!\n") ;
return 0;

}

It works the same way as the C printf routine except that
it writes output to both standard output and log file output.

3-38

The veriuser.c File
#include "veriuser.h"
#include "vxl_veriuser.h"

……
extern int hello();
s_tfcell veriusertfs[TF_MAXARRAY] =
{ /*** Template for an entry:

{ usertask|userfunction, data, checktf(), sizetf(), calltf(),
misctf(), "$tfname", forwref?, Vtool?, ErrMsg? }, ***/

/*** add user entries here ***/
{ usertask, 0, 0, 0, hello, 0, "$hello", 1},

{0} /*** final entry must be 0 ***/
};

always set to 1

task name

function name

task type

function declaration

20

3-39

Compiling and Linking with vconfig

Type vconfig

Name the shell script
(default is cr_vlog)

Name the executable
(default is verilog)

Enter the path
of veriuser.c

List any C files you want
compiled and linked

cr_vlog shell
script created

Run the shell
script

new verilog
created

3-40

Running Results

Compiling source file “hdl.v”
Highest level modules:
test

hello from the task

task invocation

output results

/* in file hdl.v */
module test ;

……
initial begin

……
$hello ;

end
endmodule

21

3-41

Passing Data
/* in file hdl.v */
module test ;

……
initial begin

……
$hello(3) ;

end
endmodule

extern int hello();
s_tfcell veriusertfs[TF_MAXARRAY] = {

{ usertask, 0, 0, 0, hello, 0, "$hello", 1},
{0} /*** final entry must be 0 ***/

};

int hello() {
int i ;
int count = acc_fetch_tfarg_int(1) ;
for (i=0; i<=count; i++)

io_printf("hello from the task!!\n") ;
return 0;

}

veriuser.c

user-supplied
routine

task invocation

get task argument

3-42

Special Events

extern int my_misctf (int data, int reason);
s_tfcell veriusertfs[TF_MAXARRAY] = {

{ usertask, 1, 0, 0, 0, (int (*)(void)) my_misctf, "$task1", 1},
{ usertask, 2, 0, 0, 0, (int (*)(void)) my_misctf, "$task2", 1},

{0} /*** final entry must be 0 ***/
};

veriuser.c

data field misctf
function

task nametype
transformation

22

3-43

Special Events (cont’d)
int my_misctf (int data, int reason) {

char *task_name;
switch (data) {

case 1: task_name = “$task1”; break;
case 2: task_name = “$task2”; break;

}
switch (reason) {

case REASON_ENDOFCOMPILE:
io_printf(“End compile from %s\n”,task_name);
break;

case REASON_FINISH:
io_printf(“Finish for %s\n”,task_name);
break;

}
return 0;

}

user-supplied
routine

3-44

Running Results

/* in file hdl.v */
module test ;

……
initial $task1;
initial $task2;
endmodule

Compiling source file “hdl.v”
Highest level modules:
test

end compile from $task1
finish for $task2

task invocation output results

23

3-45

Case Study -- Coverage Analysis
Insert PLI TF routines ≈ set break points in the
program

Can do the jobs we want at the stops
Supported by almost all simulator

Where to insert those TF routines is an
important issue

Require a pre-processing tool

Conduct the pre-processing and execute the
simulation with the instrumented HDL code can
obtain the required coverage data

3-46

Coverage Analysis Flow

Verilog
Code

Simulator with
special PLI

Coverage
Report

GUI or
Text

Instrumented
Code

modified
HDL code

Instrumentation
Tool

slower
simulator

pre-processing

User-Requirement
(metrics, region…)

24

3-47

The veriuser.c File

#include "veriuser.h"
#include "vxl_veriuser.h"

……
extern int setup (int data, int reason);
extern int count ();
s_tfcell veriusertfs[TF_MAXARRAY] = {

{ usertask, 0, 0, 0, 0, (int (*)(void)) setup, "$setup_count", 1},
{ usertask, 1, 0, 0, count, 0, "$count_block", 1},
{0} /*** final entry must be 0 ***/

};

3-48

The C Routines
#include <stdio.h>
#include <stdlib.h>
#include "veriuser.h"
#include "acc_user.h"

int blockno = 0;
int *binfo = NULL;

int count()
{

int cnt = acc_fetch_tfarg_int(1);
if (!binfo) return -1;
else binfo[cnt]++;
return 0;

}

25

3-49

The C Routines (cont’d)
int setup(int data, int reason) {

int i; FILE *fp = NULL;
switch (reason) {
case REASON_ENDOFCOMPILE:

fp = fopen ("_jimmy_blockno.dat","r");
fscanf (fp,"%d",&blockno); fclose (fp);
binfo = (int *) malloc (blockno*sizeof(int));
for (i=0; i<blockno; i++) binfo[i]=0;
break;

case REASON_FINISH:
if (binfo) {

fp = fopen ("_jimmy_execount.dat","w");
for (i=0; i<blockno; i++) fprintf (fp,"b%d %d\n",i,binfo[i]);
fclose (fp); free (binfo);

}
break;

}
return 0;

}

3-50

A FSM Example
module fsm (found, serial, clk, reset) ;
output found ;
input serial, clk, reset ;
reg found ;
reg [1:0] current_state, next_state ;
parameter [1:0]

S0 = 0,
S1 = 1,
S2 = 2 ;

always @ (reset or serial or current_state)
begin

if (reset) begin
next_state = S0 ;
found = 0 ;

end
else begin

next_state = current_state ;
found = 0 ;
case (current_state)

S0 : begin
if (serial == 1) next_state = S2 ;

end
S2 : begin

if (serial == 0) next_state = S1 ;
else next_state = S2 ;

end
S1 : begin

next_state = S0 ;
if (serial == 1) found = 1 ;

end
endcase

end
end

always @(posedge clk)
current_state = next_state ;

endmodule

26

3-51

Instrumented Code
always @ (reset or serial or current_state)

begin
if (reset) begin

next_state = S0 ;
found = 0 ;
$count_block(0);

end
else begin

next_state = current_state ;
found = 0 ;
case (current_state)
S0 : begin

if (serial == 1) begin
next_state = S2 ;
$count_block(1);

end
$count_block(2);

end
S2 : begin

if (serial == 0) begin
next_state = S1 ;
$count_block(3);

end

else begin
next_state = S2 ;
$count_block(4);

end
$count_block(5);

end
S1 : begin

next_state = S0 ;
if (serial == 1) begin

found = 1 ;
$count_block(6);

end
$count_block(7);

end
endcase
$count_block(8);

end
$count_block(9);

end
always @ (posedge clk) begin

current_state = next_state ;
$count_block(10);

end

3-52

Test Patterns

module test;
reg serial, clk, reset ;
wire found ;
fsm u1 (found, serial, clk, reset) ;
always #5 clk=~clk;
initial begin

clk=0; reset=0; serial=0;
#2 reset=1;
#10 reset=0;
#20 serial=1;
#10 serial=0;
#30 $finish;

end
endmodule

module test;
reg serial, clk, reset ;
wire found ;
fsm u1 (found, serial, clk, reset) ;
always #5 clk=~clk;
initial begin

clk=0; reset=0; serial=0;
#2 reset=1;
#10 reset=0;
#20 serial=1;
#10 serial=0;
#30 $finish;

end
initial $setup_count;
endmodule

original instrumented

Add this line

27

3-53

Temporary Files

11
b0 32
b1 41
b2 40
b3 44
b4 45
b5 43
b6 49
b7 47
b8 36
b9 31
b10 55

b0 2
b1 1
b2 3
b3 1
b4 1
b5 2
b6 0
b7 1
b8 7
b9 9
b10 7

_jimmy_blockno.dat _jimmy_execount.dat

total number
of blocks

block
number

starting line
of this block

block
number

execution count
of this block

3-54

Output Results
statement coverage information ...
count #line text
--

21 module fsm (found, serial, clk, reset);
output found;
input serial, cllk, reset;
reg found;
reg [1:0] current_state;
reg [1:0] next_state;
parameter S0 = 0 ;
parameter S1 = 1 ;
parameter S2 = 2 ;

31 always
31 @ (reset or serial or current_state)
31 begin
32 if (reset) begin

2 33 next_state = S0 ;
2 34 found = 0 ;

35 end
36 else begin

7 37 next_state = current_state ;
7 38 found = 0 ;

39 case (current_state)

40 S0 : begin
41 if (serial == 1)

1 41 next_state = S2 ;
42 end
43 S2 : begin
44 if (serial == 0)

1 44 next_state = S1 ;
45 else

1 45 next_state = S2 ;
46 end
47 S1 : begin

1 48 next_state = S0 ;
49 if (serial == 1)

0 49 found = 1 ;
50 end
51 endcase
52 end
53 end
55 always
55 @ (posedge clk)

7 55 current_state = next_state ;
56 endmodule

--
statement coverage = 9 / 10 = 90%

