
Programming Assignment 3-2:
Two-Level Logic Minimization

Problem Descriptions:
Implement the step 2 of two-level logic minimization. Our goal is to find the minimum (exact
minimum) sum-of-products expression for a given function.

Two-Level Logic Minimization
Step 1. Generate all prime implicants.

! Use the results from Quine-McCluskey method. (HW 3-1)
Step 2. Extract the minimum sum-of-products expression.

! A minimum sum-of-products expression is a sum of product terms which (a)
has a minimum number of terms, and (b) of all those expressions with the same
minimum number of terms, has a minimum number of literals.

! Use the branch-and-bound method.
cost = (#term, #literal), where #term refers to the number of terms and #literal
refers to the number of literals. If an expression has the minimum cost, then its
cost is lexicographically less than or equal to the cost of any other expression,
e.g., (2, 6) ≤ (3, 5).
Search from a must (a prime is essential) to reduce the search space.

Input format:
You should allow input from a file that is generated from HW 3-1 as shown below.
f(A,B,C,D) = ∑ m(4,5,6,8,9,10,13) + ∑ d(0,7,5).

.i 4 /* the function f has 4 input variables: A,B,C,D. */

.m /* on set */
4 5 6 8 9 10 13
.d /* don't care set */
0 7 15
.p 7 /* there are 7 prime implicants */
0-00 /* A'C'D' */
-000 /* B'C'D' */
100- /* AB'C' */
10-0 /* AB'D'*/
01-- /* A'B */
1-01 /* AC'D */
-1-1 /* BD */
.end

Output format:
10-0 /* AB'D'*/
1-01 /* AC'D */
01-- /* A'B */
cost=(3,8)

Grading:
Your grade depends on the correctness, runtime, and the pruning strategy of your

program. You may first compress all of the source code and execution file and then email your
homework to TA before the deadline (please specify your student ID in the subject). The
implementation details and your comments about this homework should be written in a
simple report and mailed to TA together.

